NTNU Norges teknisk-naturvitenskapelige universitet
  Fakultet for informasjonsteknologi, matematikk og elektroteknikk > Institutt for datateknikk og informasjonsvitenskap

IT3105 - Kunstig intelligens programmering, høst 2017

Contents
  • Home

  • Schedules

  • Projects

  • Grading

  • Lectures

  • Materials

  • News

  • Results


  • Projects (Autumn 2017)

    Each project consists of one or more modules. Unless otherwise noted by the instructor, each project will be delivered as both a demonstration and a report (or combination of reports, one for each module).
    • Project 1 (40 points): Modules 1 and 2
    • Project 2 (30 points): Module 3
    • Project 3 (30 points): Module 4

    Modules

    • 1: Using A* to solve Rush Hour Problems. spec .
    • 2: A*-GAC, A General Constraint-Satisfaction Problem Solver. spec
    • 3: A Tensorflow Interface spec
    • 4: Self-Organizing Maps spec

    Supporting Data or Code Files

    Module 1: Rush Hour Scenarios:

    Easy 3 ; Medium 1 ; Hard 3 ; Expert 2 ;

    ** All of these scenarios assume the standard 6 x 6 board, as will all scenarios used in the demo session.

    Module 2: Nonograms:

    Cat ; Chick ; Clover ; Elephant ; Fox ; Rabbit ; Reindeer ; Sailboat ; Snail ; Telephone

    ** The format for nonogram files is described in the project specification.

    Module 3: Interface to Tensorflow

    Data Files

    Tensorflow Code

    Tflow Tools ; Tutorial #1 ; Tutorial #2 ; Tutorial #3 ;

    Module 4: Self-Organizing Maps

    Travelling Salesman Data Files

    TSP data zip file

    RedaktÝr: Kontorsjef: Eivind Voldhagen  Kontaktadresse: Audun Liberg  Sist oppdatert: 01.01.1970