Web Search and linguistics

- Web search is important
 - 85% use search engines
 - 1/3 of web sessions involve search engines
- Web search is difficult
 - Large volumes of data
 - Dead links, dynamic pages, relocations, frames, etc.
 - Variable document quality
 - Multitude of languages

- Too many documents available
- How to select the relevant documents
- How to rank the selected documents

Using linguistic techniques to analyze document content
Outline of Presentation

- Why is Web Search so difficult?
- Why is linguistics needed?
- Internet Search Architecture and AllTheWeb
- Linguistic Techniques on AllTheWeb
- Discussion

Why is Web Search so Difficult?

- Volume of data:
 - Document explosion (table from 2005)
 - Document dynamics
 - Distributed over many computers and platforms

<table>
<thead>
<tr>
<th>Search Engine</th>
<th>Reported Size</th>
<th>Page Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>8.1 billion</td>
<td>101K</td>
</tr>
<tr>
<td>MSN</td>
<td>5.0 billion</td>
<td>150K</td>
</tr>
<tr>
<td>Yahoo</td>
<td>4.2 billion (estimate)</td>
<td>500K</td>
</tr>
<tr>
<td>Ask Jeeves</td>
<td>2.5 billion</td>
<td>101K+</td>
</tr>
</tbody>
</table>

- Multitude of languages:
 - Multi-lingual web
 - 40-50 languages used on the web
 - Many text encoding standards
Why is Web Search so Difficult?

- **Document Quality:**
 - Misspellings
 - Spam and offensive content
 - Little text
 - All topics

- **User Behavior:**
 - Misspellings
 - Query length: 2.4 terms
 - Query session: 8 queries
 - Half of the documents viewed are among top three documents on result page

<table>
<thead>
<tr>
<th>Query</th>
<th>No. of documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>événements</td>
<td>76,000</td>
</tr>
<tr>
<td>événements</td>
<td>420,000</td>
</tr>
<tr>
<td>événements</td>
<td>35,000</td>
</tr>
<tr>
<td>événements</td>
<td>95,000</td>
</tr>
<tr>
<td>événements</td>
<td>22,000</td>
</tr>
<tr>
<td>événements</td>
<td>9,000</td>
</tr>
</tbody>
</table>

Why is Linguistics Needed?

- **Ultimate goal**
 - Understand document content
 - Understand user information need

- **Immediate goal**
 - Handle syntactic variation
 - Handle morphological variation

- **Effects**
 - More relevant documents retrieved
 - Most relevant document on top of list
 - Result list more understandable to user
Web Search Architecture

- AllTheWeb search architecture (2002)

Crawling cycle: 9-11 days
Online news sources continuously crawled

800 mill. pages (Oct 2003: 3.1 billion)
2000 online news sources
115 mill. pictures
2 mill. MP3 songs

(150,000 unique visitors every week)
30 mill. queries per day

Web Search Architecture

Linguistic Techniques

- Three categories of linguistic/text mining techniques

Categorizing techniques

<non> Search options
- All selected
- Category-based selection
- Documents Categories of documents

Transformational techniques

Query Transformed query
Keyword-based search
Content-based search
Relevant documents Transformed documents

Presentational techniques

- Title-based access
- Content-based access

List of documents Presentation of document list

Improved transparency

- Speed
- Flexibility (modifications and languages)

- Increased semantics
- Reduced search space
Linguistic techniques: 1

- Language Identification
 - Allows the user to select the language of the retrieved documents
 - Method:

 I. Languages with clear word boundaries: Identify language by dictionary lookup
 II. Languages with no clear word boundaries: Identify language by checking document against frequency list of bigrams
 III. Additional strategies:
 - HTML structural information and meta information
 - Domain names (e.g., .NO)

- Status (Jan 2002):
 - 52 languages recognized
 - 95-96% of web documents successfully tagged for language

Linguistic Techniques: 2

- Offensive Content Reduction
 - Allows the user to filter out offensive documents (e.g., pornography)
 - Method:

 I. Maintain offensive dictionary of weighted words and phrases
 II. Traverse first part of document and calculate score for offensive material based on dictionary lookup
 III. Tag offensive documents in index

- Status:
 - English, German, Italian, Spanish, and French
 - Problematic for documents with little text
Linguistic Techniques: 3

• **Text Categorization**

 - Allows the user to restrict the search to certain categories
 - Each category is defined by a dictionary with characteristic words and phrases
 - Example: SCIRUS library of scientific information (www.scirus.com)
 - Categorization dimensions:
 - content
 - type

 - Categorization difficult for the Web

Method:

I. Maintain dictionary of words and phrases with associated categories
II. Content categorization: Calculate score for each category by looking up words and phrases in the dictionary
III. Extract meta information from structural information in document
IV. Type categorization: Deduce document type using rules that analyze the document's meta information

- Categories: computer science, economics, business and management, etc.
- Types: homepage, abstract, article, etc.
Linguistic Techniques: 4

• Lemmatization

 – Map inflections of words onto one canonical representation (lemma)

 – Examples:
 writes -> write
 written -> write
 was -> be
 cars -> car
 better -> good
 best -> good

 – Retrieve documents also if inflections do not match; semantic retrieval

 Several ways of implementing lemmatization

 | Query | Document |
 |----------------|----------------|
 | Actual text | Lemmatized text|
 | good cars | good car |
 | The best car...| The good car...|

• Lemmatization cont.

 – Method:

 | Strategy | Query | Document |
 |--------------------------------|-----------|------------|
 | Expand with all forms | car | cars |
 | Expand with base form | cars | car |
 | Replace with base form | car | car |

 – Status:

 – Need large full-form dictionaries during indexing (e.g. around 1 million full-forms in German dictionary)
 – Increase of Russian/Polish index: 600-800%
 – Increase of German index: 5%
Linguistic Techniques: 5

- **Phrasing**
 - Some queries should be interpreted as phrases to increase precision
 - mutual information
 - 1,000,000 documents
 - "mutual information"
 - 6,300 documents
 - Phrases recognized in documents, queries and indexes
 - Method:
 1. Maintain phrase list during querying (English, German, French)
 2. Identify and quote longest left-most phrases in query from list of phrases
 3. Add bigrams of all consecutive query terms that are not part of a phrase as optional phrases
 - Example:
 - New York art museum
 - ALL
 - +"New York" +art +museum "art museum"

Linguistic Techniques: 6

- **Anti-Phrasing**
 - Some queries contain phrases that disturb the search
 - where can I find The Economist
 - Homepage of The Economist not found
 - The Economist
 - Homepage of The Economist found
 - Anti-phrasing means to remove irrelevant phrases in the beginning of queries
 - Method:
 1. Maintain anti-phrase list during querying (English, German, French)
 2. Phrase query
 3. Identify and remove longest left-most anti-phrase starting at position 1 in query
 - Example:
 - where do I find New York
 - Phrasing
 - where do I find "New York"
 - Anti-phrasing
 - "New York"
Linguistic Techniques: 7

• Document Clustering

 – Present list of retrieved documents in the form of a hierarchical tree
 – Clusters computed on the fly based on X highest ranked documents
 – Clusters sum up possible topics of query
 – Method:

 I. Retrieve X highest ranked documents for the query posted
 II. For each document:
 a. Extract words and phrases and assign numeric measure of importance to each of them
 b. Construct document vector (or use precomputed vector)
 c. For clusters already known: Try to map document to existing clusters
 d. If mapping to existing cluster fail: Construct new cluster on the fly and assign document to new cluster

 – Clustering is language-independent (except for stopword lists)

Discussion

• Speed and Flexibility
 – Finite-state automata
 – Dictionary-driven applications

• Relevance Effects
 – Difficult to measure

• Future Challenges
 – Linguistic sophistication vs. speed/space requirements
 – Still far from real semantic information retrieval
 – Semantic Web