
On the Use of Peer-to-Peer Architectures for the Management
of Highly Dynamic Environments

Carlos Kamienski, Djamel Sadok, Joseane Farias Fidalgo, Jennifer Lima
Universidade Federal de Pernambuco, Brazil

Börje Ohlman
Ericsson Research, Sweden

E-mail: {cak, jamel, joseane, jennifer}@gprt.ufpe.br, Borje.Ohlman@ericsson.com

Abstract

Scalable distributed management is a key challenge
for current Internet services and necessary for future
ubiquitous services of wireless mobile users. Policy-
based Management (PBM) is seen as a practical
solution for dealing with the needs of new advanced
services for highly dynamic wireless environments. The
IETF developed a two-tier client/server PBM
framework, yet it requires some important extensions in
such environments. In this paper we look into new
management mechanisms for dealing with these
limitations by proposing the Peer-to-Peer Policy
Management Infrastructure (P4MI), a PBM framework
based on peer-to-peer technology as the main enabling
mechanism. We instantiate this abstract framework to
Ambient Networks, a new concept aimed at creating
network solutions for new mobile and wireless systems.
We show that the P4MI is both a scalable and a
complete PBM solution for coping with the challenges of
Ambient Networks.

1 Introduction

The Internet is literally on the move. We need to
review our management architectures to attend to such
challenging new services. Policy-based Management
(PBM) can be seen as a significant step towards
automatic and dynamic configuration. PBM is an
approach to simplify the administration of a complex
network infrastructure by establishing policies to deal
with situations that are likely to occur in a largely
automated fashion. Policies represent business targets and
objectives that describe how to allocate or configure
resources in a general sense to meet them. In
networking, they also refer to the ability to manage and
control the access to the network using high-level
abstracted rules and decisions. Formally, a policy may

be defined as an aggregation of rules, where each one
consists of one or more conditions and actions.

The PBM framework developed by the IETF [3] is
a model for policy management comprised of Policy
Decision Points (PDPs, also known as policies
servers), Policy Enforcement Points (PEPs), policy
repository and Policy Management Tool (PMT). The
PDP is responsible for handling requests, querying the
policy repository, making decisions and distributing
them to the PEPs, which are the entities (e.g. routers)
where the actions actually are implemented and/or
enforced. The PMT support the specification, editing,
validation and administration of policies, through a
graphical interface. These policies are then stored in
the policy repository. Some protocols are necessary
within this framework, such as COPS for PDP and PEP
interworking and LDAP for the PDP to be able to
access policies in the policy repository.

The IETF PBM framework was not designed for
having in mind heterogeneous scenarios where
frequent changes are the rule, such as dealing with
mobile and wireless users with highly dynamic usage
patterns and unpredictable service needs. One of the
most evident limitations is related to system scalability
[1], since in the two-tier model adopted by IETF one
PDP can only control a limited number of PEPs.
Another source of scalability concerns is the very
nature of the client/server solution, where features such
as load balancing, fault tolerance and network self-
configuration do not fit the model well. Some
proposals have been emerging in the last years,
acknowledging the important step represented by the
IETF framework and extending it to deal with typical
requirements of a more dynamic scenario. The Unified
Policy-based Management (UPM) [1] proposes a three-
tier model, by adding an intermediary entity between
the PDPs and PEPs, known as PEA (Policy
Enforcement Agent). This hierarchical model has some
limitations, since it does not abandon the client/server

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06)
0-7695-2520-2/06 $20.00 © 2006 IEEE

model, yet it adds complexity to it. In [2], a PBM
framework for Always Best Connected (ABC) users is
proposed, introducing user, terminal and network
profiles and also a policy based handover management.
However, it also preserves the client/server model.

In this paper, we propose and investigate the benefits
of using the P2P Policy Management Infrastructure
(P4MI), a PBM framework based on the peer-to-peer
(p2p) technology as the main enabling mechanism. A
hierarchical p2p architecture, using a Distributed Hash
Table (DHT) [4] is the core of P4MI. It introduces the
Policy Decision Network (PDN), a network comprised
of policy servers interconnected by a DHT.

As an application of P4MI, we develop PBMAN, a
PBM solution for Ambient Networks (AN), which are a
new concept aimed at creating network solutions for
mobile and wireless systems beyond 3G [6]. The key
AN concept is network composition, for allowing
dynamic user access to services. Composition can be
thought of as a mechanism for automatic negotiation of
roaming and/or service level agreements (SLAs), which
today are done manually, mostly off-line. PBMAN maps
concepts of P4MI into the AN scenario, providing
efficient and scalable mechanisms for network
composition and policy distribution and retrieval. We
also have implemented a prototype of PBMAN to
demonstrate these ideas. To our knowledge, this is the
first work that uses P2P architectures for PBM. We
decided to consider P4MI and PBMAN as separate
entities because we expected this will provide us higher
flexibility and more formalism when modeling a
different problem area.

There are three main motivations for proposing a
new framework for policy management. First, the IETF
framework is focused on specific policy areas, such as
QoS and security, and on simpler problems from typical
corporate networks. We are broadening the scope of
applications for policy management considering service
usage in the global Internet. Second, the 3G/4G
scenarios targeted by our proposal consider a huge
number of mobile wireless users with highly dynamic
mobility and service usage patterns. Traditional PBM
does not provide dynamic information sharing among
policy domains. Requirements specified for Ambient
Networks [4] give an idea of the complexity of such new
environment. And third, for complying to important
requirements associated with those environments, which
are provided by the p2p technology, such as scalability,
fault tolerance and load balancing.

The rest of the paper is structured as follows.
Section 2 presents the abstract P4MI architectural
framework, whereas in Section 3 the instantiation of
P4MI to PBMAN is introduced. Finally, section 4
concludes the article with some final remarks.

2 P4MI Architectural Framework

The Internet growth dictates the adoption of a
distributed architecture that guarantees rapid anywhere
anytime access to resources and services. We found in
the DHT structure an important technology to enable
the building of such scalable architecture. Figure 1
shows the P4MI envisioned architecture, comprised of
the Policy Decision Network (PDN), PEPs, policy
users and their interaction. PEPs and users are called
policy agents. The big picture shows a hybrid
hierarchical p2p architecture based on super-nodes, yet
having a structured organization. Policy servers
interwork through a DHT network, policy agents
communicate with each other also in a p2p fashion and
agents communicate with policy servers in a
client/server structure. This is aimed at providing both
scalability and fault tolerance, since policy servers are
robust and stable carefully chosen hosts, whereas policy
agents may be low capacity, fragile equipments and
present variable connectivity. The latter characteristics
are one of the weaknesses of pure DHT network, since
they may temporarily store important information.

PEP AgentPEP Agent

PEP AgentPEP Agent

User AgentUser Agent

User AgentUser Agent

PDN / PDNPDN / PDN
Agent / PDNAgent / PDN
Agent / AgentAgent / Agent

InteractionInteraction

PDN / PDNPDN / PDN
Agent / PDNAgent / PDN
Agent / AgentAgent / Agent

InteractionInteraction

Policy Decision NetworkPolicy Decision Network

(PDN)(PDN)

Figure 1 – P4MI architecture

2.1 Policy Decision Network

The PDN is the heart of P4MI, primarily
responsible for functionalities related to PBM and p2p
interworking, such as storing and retrieving policies
and taking decisions upon receiving service requests.
The PDN is comprised of two main entities, Decision
Points and Repositories. A Decision Point, also called
PDN Node or P-Node, is a policy server, which accepts
some part of the whole PDN work. There is a
significant difference between a PDP in the IETF PBM
model and a P4MI P-Node. The latter is able to
interwork with other P-Nodes by design via a
distributed p2p DHT-based network, which is called
PDN-ring. The PDN-ring provides P4MI with the
inherent features of p2p systems, such as load

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06)
0-7695-2520-2/06 $20.00 © 2006 IEEE

balancing, fault tolerance, scalability and ability to deal
with system’s heterogeneity.

The PDN has also two information repositories, the
Policy Repository (PR) and the Management
Information Repository (MIR). The PR must store
policies according to some requirements, such as
making easier the process of searching and retrieving
policies. P4MI does not specify a particular storage
technology, such as LDAP or a DBMS, as long as
different implementations are able to interwork. In
addition to the policies themselves, there is a need for
keeping information about entities that are to be
managed with policies, which is stored in the MIR.
Typical information in the MIR is profile information
for policy agents and targets (section 3.4.1),
associations between policies and targets, policy to
device mapping and configuration, control and
management information of the PDN itself.

Bootstrapping the PDN is an important issue, yet
not necessarily part of the P4MI framework, since this
is also a design decision of current p2p networks. Each
network is free to decide PDN bootstrapping rules, that
may follows a wide variety of approaches, from
manual configuration to automatic maintenance of the
P-Node member list.

2.2 Policy Environment

Policy Agents are represented by hosts, equipments
or devices used by users or networks for providing
services and enforcing policies. The interaction
between agents and the PDN is based on the
hierarchical p2p DHT-based adopted approach. Agents
may be comprised of two parts, which may be
simultaneously present or not: PEPs and Users. PEPs
are agents aimed at enforcing policies, such as routers
and firewalls. PEP agents are also software and
hardware for providing services, which must enforce
policies of right of use, security, accounting, etc. Users
represent devices or networks of connected devices
that a given real user is using for accessing services.

Bootstrapping an agent is simple and only requires
the address of one P-Node to be manually configured
at the first time. At any time an agent connects to its
PDN, it receives an up-to-date list of P-Nodes.

A typical policy transaction starts with an event,
such as a service request arriving at a PEP agent, which
in turn sends a service request to the PDN. In response,
the PDN will select those policies that match particular
conditions of that query (e.g., service, time, access). In
that case, all policies related to this user must be
recovered, i.e., policies associated directly to the user
and indirectly, via target1 relations (e.g. groups,

1 Targets are entities which policies may be associated to.

services). The information model is used as the main
guide in the selection process, defining policies, targets
and their associations.

The basic algorithm can be summarized in five phases:
policy retrieval policy selection conflict resolution

 action analysis action enforcement. A complete
algorithm for a particular instantiation of P4MI would be
more complex, considering different factors, such as the
particular information model used. As a matter of fact, an
algorithm for policy processing has been developed for
PBMAN. Real policies are not presented in this paper,
due to lack of space.

2.3 Policy Data Model

An information model is the abstract representation of
managed entities and how they relate to each other,
whereas a data model maps a given information model
into a particular storage system [7]. P4MI provides a
data model, structured upon the PDN, using a data
management model that extends the DHT network. It is
designed for enabling the mapping from different
information models. One known limitation of DHT-
based systems is that they only support exact-match
lookups, i.e., lookup operations require the user to
provide the exact key used to generate the hash table
index for storing the information. This lack of
flexibility requires additional data management
features to be added, in order to make it able to deal
with more complex data structures, such as lists and
tables. OpenDHT shares a similar concern [11].

Most DHTs systems offer a basic mechanism for
storing basic registers, which suffer from the exact key
limitation. Therefore, P4MI adds a new layer for
dealing with policy storage and retrieval. The data
management architecture (Figure 2) is divided into
three functional layers. Layer 1 includes a DHT
network and a simple storage system. Layer 2 provides
a higher-level view of the data management system,
adding some new functionality, such as modeling
entity relations and indexing, which are missing in the
Layer 1. Layer 3 includes all policy readers and
writers, such as Users, PEPs and the PMT.

The architecture includes three APIs. The Data
Management API (DM API) is external (peer-to-peer)
and the most important one from the standpoint of
those entities who actually read and write policies. It
provides functions aimed at hiding the complexity of
the DHT/Storage system. The DHT API is an internal
API used by the data management layer to access low-
level functions. Finally, the Storage API (STO API) is
used by the DHT network for storing records.

In Layer 1, P4MI models data as a DHT-based
middleware extended with some storage functionality

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06)
0-7695-2520-2/06 $20.00 © 2006 IEEE

to deal simple records, which are comprised of a key
field and a content field. The key field is the DHT hash
key, further divided into a three sub-fields tuple
{Key1, Key2, Key3}. Key1 must be filled with the
network identifier, allowing multiple networks to
coexist (i.e., by network composition, for PBMAN).
Key2 represents the identity of the particular managed
entity. Key3 is used to represent the record type,
identified by reserved words (defined by particular
instantiations). The content field is a single byte stream
whose semantics are application specific. An example of
mapping this data model to PBMAN is presented in
section 3.5.

Layer 2 uses the DHT API to provide storage
capabilities to a particular application. In other words,
its design and implementation need to be customized
each time P4MI is instantiated (such as PBMAN).

Readers / Writers
(User, PEP, PMT)

Data Management

DHT Storage

Layer 3

Layer 2

Layer 1

DM API

DHT API

STO API

Client PeerClient Peer

Server PeerServer Peer

Figure 2 – P4MI Data Management Architecture

3 PBMAN - Ambient Networks Management

PBMAN (Policy-based Management for Ambient
Networks) is an example instantiation of the general
P4MI framework for dealing with Ambient Network
requirements. We also developed a prototype called X-
PBMAN that is a simplified proof-of-concept
implementation, intended to be used for exploring and
understanding the combined PBM and P2P approach
adopted in PBMAN. X-PBMAN is implemented using
the X-Peer [8], a hierarchical p2p middleware, which
currently uses FreePastry [9], an open source
implementation of Pastry [10] in Java. Although other
hierarchical p2p approaches are also good candidates
(e.g. [12]), X-Peer middleware fits the P4MI model
well, where P-nodes are modeled as X-Peer super-
nodes and policy agents are modeled as X-Peer clients.

3.1 Ambient Networks

Ambient Networks (AN) is a new networking
concept, which aims to enable the cooperation of

heterogeneous networks belonging to different operator
or technology domains [6]. This cooperation should be
transparent, under demand and “plug-and-play”, i.e.,
no previous configuration or negotiation is required
between network operators. The main innovative
concept of AN is network composition, in order to
allow rapid adaptation of the network domain topology
as required for mobile users and moving networks.
Formally, an Ambient Network is a collection of
networks and/or devices sharing a common control
plane, called Ambient Control Space (ACS). The ACS
is comprised of a collection of functional entities (FE),
each one reflecting different control and management
tasks, such as composition, mobility, security and QoS.

Network composition is the key architectural
concept and the main challenge of Ambient Networks,
aimed at enabling control-plane interworking and
sharing of control functions among networks.
Composition goes beyond what the Internet and mobile
networks can provide today in that interworking is not
restricted to basic addressing and routing. Composition
enables seamless mobility management, and improved
network and service efficiency. It also hides
interconnection details of cooperating networks to the
outside. Additional information can be found in the
Ambient Networks Project webpage2.

Intuitively, composition can be thought of as a
mechanism for automatic negotiation of roaming
and/or service level agreements (SLA), which today
are done manually. As a real example of network
composition, we deployed a scenario of the video
server, comprised of two services: basic and premium
(with quality of service guarantees). When a remote
user logs into the server, it informs its PDN, which in
turn start a composition with the remote network (if
they are not composed yet). After the composition is
completed, the local PDN is able to perform
authentication and authorization tasks, because it can
access the policies of the remote network.

3.2 Access Control Space

The general PBMAN architecture is focused on the
role and implementation of the access control space
(ACS). The PDN concept of P4MI is extended in
PBMAN for including the ACS functionality. Each P-
Node, implements a part of the ACS. Three new FEs
have been added for PBMAN, policy FE, p2p FE and
Data Management (DM) FE. The policy FE embraces
all PBM concepts, including the PDN and policy agent
functionality. The p2p FE is comprised of all p2p
functions, such as DHT-based policy location, routing,
search and retrieval. Another function of the P2P-FE is

2 http://www.ambient-networks.org

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06)
0-7695-2520-2/06 $20.00 © 2006 IEEE

managing PDN rings, as well as enabling PDN/PDN,
Agent/PDN and Agent/Agent interactions, as depicted
in Figure 1. The DM FE is associated to the p2p FE
and implements the Layer 2 of the P4MI’s data model.

3.3 Network Composition in PBMAN

Figure 3 depicts the composition of two PDNs. The
situation before the connection is shown in Figure 3a.
Both PDNA and PDNB are single PDNs, each one
having four P-Nodes. During the connection process, a
new PDN ring (PDNAB) is created and two P-Nodes of
each PDN are chosen for being members of the PDNAB.
The actual number of P-nodes to take part in the new
composed network is subject to a local policy. Since
any P-node member of the new composition may act as
a gateway between networks, fault tolerance and
scalability are achieved in a transparent manner, even
when composing multiple network hierarchies.

Composition may take some considerable time to be
performed3, but it will typically happen only at the first
access to a remote network. It is necessary for the local
P-Node to be able to perform authentication and
authorization based on the remote policies. For all
subsequent accesses, the P-Node will have instant
access to the remote network’s information and the
response therefore should be immediate.

PDN ACSPDN ACSPDNPDNAA -- SingleSingle PDN ACSPDN ACSPDNPDNBB -- SingleSingle

PA1 PA2

PA3 PA4

PB1

PB3

PB2

PB4

PDN ACSPDN ACSPDNPDNAA -- SingleSinglePDN ACSPDN ACSPDNPDNAA -- SingleSingle PDN ACSPDN ACSPDNPDNBB -- SingleSinglePDN ACSPDN ACSPDNPDNBB -- SingleSingle

PA1 PA2

PA3 PA4

PB1

PB3

PB2

PB4

a) Before Composition

PDNPDNABAB

ComposedComposed

PDN ACSPDN ACSPDNPDNAA -- SingleSinglePDN ACSPDN ACSPDNPDNAA -- SingleSingle

PAB1

PA2

PA4

PA1

PAB3

PA3

PDN ACSPDN ACSPDNPDNBB -- SingleSinglePDN ACSPDN ACSPDNPDNBB -- SingleSingle

PB1

PB3

PAB2

PB2

PAB4

PB4

b) After Composition
Figure 3 – Composition of PDNA and PDNB

The life cycle of a composition between PDNs is
comprised of six phases: triggering, negotiation, setup,
utilization, decomposition triggering and decomposition
execution. Composition triggering is the event that
motivates a new composition, usually a service request
access from a user to a PEP and then to the PDN for
policy processing. Before the policy retrieval is started,
the P-Node must check whether a composition is
needed. Decomposition triggering is a per-domain

3 We observed this long delay in our implementation.

choice, such as a timeout when the network realizes that
the composition is not being used any longer.

A simplified version of the negotiation is presented in
the following algorithm. Notice that unusual situations,
such as composition refusal and renegotiation are not
included.

Step 1: a composition negotiation starts when a P-
Node from the source PDN sends a composition
request message to one selected P-Node of the
destination PDN. These two P-Nodes will negotiate the
composition, each one representing its own network.

Step 2: The composition request is accepted, and
the source P-Node creates a new PDN ring (it becomes
the bootstrap peer of the DHT) and publishes the list of
P-Nodes that will take part of it. This list is obtained by
combining its own list of P-Nodes from its home
network together with the list of the destination
(remote) network provided with the accept message.

Step 3: Both source and destination P-Nodes send
join messages to all other P-Nodes of their PDNs that
will take part on the new composed PDN.

Step 4: All P-Nodes join the new PDN and
republish their policies and other policy-related
information. Before that, P-Nodes need to be sure that
a certain number of P-Nodes already joined the PDN,
for avoiding excessive key redistribution in the DHT
(that happens when new peers join a DHT network).
To do that, P-Nodes obtain two lists that are published
in the PDN: the PDN member list, which contains the
actual P-Nodes that already joined the PDN; and the
PDN “to be” member list, which contains the P-Nodes
that were expected to be members the PDN (that was
published in step 2). The decision of when to republish
the information is based on the percentage of P-Nodes
that already joined the network. If that percentage is
reached, the information is republished. If not, the P-
Node waits a random time and repeats the same
process. For dealing with the situation where some P-
Nodes take a long time to join the new PDN (or maybe
never do it) there is a timeout mechanism. After a P-
Node joins the PDN, it updates the PDN member list.

Step 5: Composition is finished when all P-Nodes
joined the new PDN, or a timeout was exceeded. When
the composition negotiation is triggered by a user
service request, the source P-Node needs to know
when the composition is ready to be used.

We specified and implemented a simple composition
protocol for the X-PBMAN prototype, extending this
basic algorithm. Our experience with its usability and
performance will be reported in another paper.

3.4 Policy Information Model

The overall goal of an information model for
PBMAN is allowing efficient and flexible policy

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06)
0-7695-2520-2/06 $20.00 © 2006 IEEE

processing and service usage decisions to be made.
PBMAN information model comprises three main
types of management entities: policies, targets and
associations. One important step in a policy
management system is the association between policies
and targets. For PBMAN, targets are: user, group,
network (AN), service, service bundle and access class.
The latter is a technology-independent way of
classifying access technologies by common features.

The PBMAN information model is presented to
illustrate how the P4MI data model can be used. We
are not advocating this model as a general solution to
ambient networks, since various other models could be
used. Its importance is that it has been successfully
used in our prototype implementation.

3.5 Data Management Layer

As an instantiation of a general framework, the
information model of PBMAN needs to be mapped to
the data model of P4MI. This is done by using the Data
Management Layer in such a way to allow policies,
targets and associations to be efficiently stored and
retrieved from the repositories. The need for seven
reserved words for the record type Key3 field has been
identified: info, ${entity}-list, index, translation,
policy, target and map-${entity}. An example of using
the data management layer is::

{AN Id, Policy Id, info): Definition of a single policy;
policy Id is a unique identifier and info contains the
policy body, written in a policy language.
{AN Id, Target Id, policy}: List of all policies
associated to a given target; after retrieving the list,
policies are retrieved one by one using the {AN Id,
Policy Id, info) record.
{AN Id, Policy Id, target}: a list of all targets
associated to a given policy.
These records are primarily needed for retrieving

policies during the policy processing process in
response to a service request. As DHT only allows
exact lookups, lists of entities and recursive lookups
are needed. In our prototype, we implemented parallel
lookups to improve data management efficiency. In
this example, upon retrieving a policy list, the P-Node
can retrieve all selected policies concurrently.

4 Conclusions

This paper described the P4MI framework, a
flexible and new scalable Policy-Based Management
framework based on p2p technology as the main
enabling underlying mechanism. A hierarchical p2p
architecture, using a DHT is the core model of P4MI. It
is expected to be suitable for scalable distributed

management needed by the future ubiquitous services
provided for wireless mobile users. We also
instantiated this abstract framework to Ambient
Networks, that are expected to present high levels self-
management features, required for providing dynamic
and instant user access to services and resources.

We have implemented a prototype of PBMAN, using
an extended DHT-storage middleware called X-Peer,
based on Pastry substrate. We expect it will provide us
enough feedback for being able to understand further the
core features and limitations of P4MI.

As future work we will continue the development of
the PBMAN prototype in order to be able to assess its
real applicability for a scenario of instant service
access and dynamic network composition. We also will
work on other different instantiations of P4MI.

5 Acknowledgements

This work was supported by the Research and
Development Centre, Ericsson Telecomunicações S.A.,
Brazil.

6 References

[1] Law, K. L. E. & Saxena, K., “Scalable Design of a
policy-Based Management System and its
Performance”, IEEE Communications Magazine, 2003.

[2] Chaouchi1, H. &, Pujolle, G. “Policy based
management framework for Always Best Connected
users”, 1st Intl. ANWIRE Workshop, April 2003.

[3] Yavatkar, R., Pendarakis, D. & Guerin, R., “A
Framework for Policy Based Admission Control,” RFC
2753, January 2000.

[4] Balakrishnan, H., et al., ‘Looking Up Data in P2P
Systems”, Communications of the ACM, February 2003.

[5] Kappler, C., “Connecting Ambient Networks -
Requirements and Concepts”, Deliverable D3.1,
Ambient Networks Project, August 2004,

[6] Niebert N. et al., “Ambient Networks: An Architecture
for Communication Networks Beyond 3G”, IEEE
Wireless Communications, April 2004

[7] Westerinen, A., “Terminology for Policy-Based
Management”, RFC 3198, November 2001.

[8] Rocha Jr., J., Fidalgo, J., Dantas, R., Oliveira, L.,
Kamienski, C. & Sadok, D., “X-Peer: A Middleware for
Peer-to-Peer Applications”, 1st Brazilian Workshop on
Peer-to-Peer (WP2P), May 2005, (in Portuguese).

[9] FreePastry, Rice University, http://freepastry.rice.edu,
last visited in 09/09/2005.

[10] Rowstron, A. & Druschel, P., "Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems", 18th IFIP/ACM Intl. Conference
on Distributed Systems Platforms, October 2001.

[11] Rhea, S. et al., “OpenDHT: A Public DHT Service and
Its Uses”, ACM SIGCOMM 2005, September 2005.

[12] Garc´es-Erice, L., “Hierarchical Peer-to-peer Systems”,
Parallel Processing Letters (PPL), December 2003.

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06)
0-7695-2520-2/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

