
TDT4735 Software Engineering, Depth Study

Code Reuse in Object Oriented

Software Development

Lisa Wold Eriksen

Supervisor: Tor St̊alhane

Coordinator: Alf Inge Wang

Norwegian University of Science and Technology, NTNU
Department of Computer and Information Science, IDI

Fall 2004



Abstract

Code reuse in object oriented software development has been common for
some time. This report aims to create an understanding of the nature of code
reuse in a group of software developing companies in Norway. The research
goals were to get an overview of how common code reuse is, to find out what
the desired and achieved effects of code reuse are, and to learn about the
used tools and procedures which are specifically developed for code reuse.
To reach these goals, a series of interviews were conducted. The interviewees
were software developers from 24 software developing companies of differ-
ent sizes, locations, and application domains in Norway. Code was reused
by software developers in all the companies, but there were few companies
where tools and/or procedures specifically developed for code reuse were
employed. The majority of the companies performed reuse in a disorganized
manner, without separating reusable code from other code. The interviewees
reported that the achieved effects were the same as the desired effects. The
effect most commonly mentioned, was improved development efficiency, i.e.
saved time and money. The effect which was second most often referred to,
was improved quality of software. Other effects named were improved sta-
bility of software, simplified testing of software, uniformity of how problems
are solved, more accurate time and price estimates, and marketing advan-
tages. It seems that many software developers are aware of the positive
effects of code reuse, but lack consciousness as to how these effects best can
be achieved.

i



Preface

This document was written as a part of the graduate level course “TDT4735
Software Engineering, Depth Study” during the fall semester 2004. The
author is a fifth year student at the Norwegian University of Science and
Technology (NTNU), Faculty of Information Technology, Mathematics and
Electrical Engineering (IME), Department of Computer and Information
Science (IDI), where this course is taught.

My sincere thanks to Tor St̊alhane, for help and guidance throughout the
project and for teaching me “Experimental Software Engineering”. I would
also like to thank coordinator Alf Inge Wang for teaching me “Software
Technology Evaluation” and doing a great job at providing information —
especially on the web — both as a coordinator and a teacher. Two more per-
sons to make an impact on my work were Peter Rønning (always available)
and Mona Elisabeth Østvang (thanks for “making my day”).

Last, but not least, I wish to thank all the companies and interviewees who
participated in this project.

ii



Contents

Abstract i

Preface ii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Prestudy and Approach 6

2.1 Prestudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Research Method Theory 9

3.1 Research processes . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Rough Problem Definition and Research Questions . . 9
3.1.2 Choice of design . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.5 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 General Information on Surveys . . . . . . . . . . . . . . . . . 12
3.3 Key Steps in Planning a Survey . . . . . . . . . . . . . . . . . 13

4 Research Planning 15

4.1 Following the Key Steps . . . . . . . . . . . . . . . . . . . . . 15
4.1.1 Definition of Objective . . . . . . . . . . . . . . . . . . 16
4.1.2 Definition of Target Population . . . . . . . . . . . . . 17
4.1.3 Sample Selection . . . . . . . . . . . . . . . . . . . . . 17
4.1.4 Survey Methods and Quality Assurance . . . . . . . . 18

iii



4.2 Interview Guide . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Plans for Data Analysis . . . . . . . . . . . . . . . . . . . . . 19

5 Research Implementation 20

5.1 Modeling the Questionnaire . . . . . . . . . . . . . . . . . . . 20
5.2 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Making the Interview Guide . . . . . . . . . . . . . . . . . . . 21
5.4 Performing the Interviews . . . . . . . . . . . . . . . . . . . . 21
5.5 Interview Transcriptions . . . . . . . . . . . . . . . . . . . . . 22

6 Results 24

6.1 Interview Summary . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.1 Worth Noting . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . 28
6.2.1 Effects of Code Reuse . . . . . . . . . . . . . . . . . . 28
6.2.2 Extent of Code Reuse . . . . . . . . . . . . . . . . . . 28
6.2.3 Use of Tools and Procedures . . . . . . . . . . . . . . 29
6.2.4 Organization of Code Reuse . . . . . . . . . . . . . . . 29

7 Evaluation 31

7.1 Research Process . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.1 Time, or Lack of It . . . . . . . . . . . . . . . . . . . . 31
7.1.2 Sample Selection . . . . . . . . . . . . . . . . . . . . . 32
7.1.3 Selecting the Right Research Method . . . . . . . . . . 32

7.2 Extracting Information From Interview Notes . . . . . . . . . 33

8 Conclusion and Further Work 34

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A E-mail Information 36

A.1 Norwegian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2 English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B Unfinished Questionnaire 39

B.1 Norwegian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.2 English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

C Interview Guide 42

C.1 Norwegian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
C.2 English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

D Reuse Models 44

D.1 Model 1 — Project Oriented . . . . . . . . . . . . . . . . . . 44
D.2 Model 2 — Reuse Through a Separate Project . . . . . . . . 45

iv



D.3 Model 3 — Component Producer . . . . . . . . . . . . . . . . 45
D.4 Model 4 — Domain Producers . . . . . . . . . . . . . . . . . 46

E Interviews 47

E.1 Interview Transcriptions . . . . . . . . . . . . . . . . . . . . . 47
E.1.1 List of Companies . . . . . . . . . . . . . . . . . . . . 48

E.2 A — Ajour Media AS . . . . . . . . . . . . . . . . . . . . . . 49
E.2.1 About the Company . . . . . . . . . . . . . . . . . . . 49
E.2.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 49

E.3 B — Antares Gruppen AS . . . . . . . . . . . . . . . . . . . . 51
E.3.1 About the Company . . . . . . . . . . . . . . . . . . . 51
E.3.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 51

E.4 C — ErgoSolutions AS . . . . . . . . . . . . . . . . . . . . . . 52
E.4.1 About the Company . . . . . . . . . . . . . . . . . . . 52
E.4.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 52

E.5 D — Fundator AS . . . . . . . . . . . . . . . . . . . . . . . . 54
E.5.1 About the Company . . . . . . . . . . . . . . . . . . . 54
E.5.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 54

E.6 E — TietoEnator . . . . . . . . . . . . . . . . . . . . . . . . . 56
E.6.1 About the Company . . . . . . . . . . . . . . . . . . . 56
E.6.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 56

E.7 F — Fronter AS . . . . . . . . . . . . . . . . . . . . . . . . . 58
E.7.1 About the Company . . . . . . . . . . . . . . . . . . . 58
E.7.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 58

E.8 G — QS Manager AS . . . . . . . . . . . . . . . . . . . . . . 60
E.8.1 About the Company . . . . . . . . . . . . . . . . . . . 60
E.8.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 60

E.9 H — Escio AS . . . . . . . . . . . . . . . . . . . . . . . . . . 61
E.9.1 About the Company . . . . . . . . . . . . . . . . . . . 61
E.9.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 61

E.10 I — Cintra Software Engineering AS . . . . . . . . . . . . . . 62
E.10.1 About the Company . . . . . . . . . . . . . . . . . . . 62
E.10.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 62

E.11 J — Lydia AS . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
E.11.1 About the Company . . . . . . . . . . . . . . . . . . . 63
E.11.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 63

E.12 K — adramatch asa . . . . . . . . . . . . . . . . . . . . . . . 64
E.12.1 About the Company . . . . . . . . . . . . . . . . . . . 64
E.12.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 64

E.13 L — Electric Farm ASA . . . . . . . . . . . . . . . . . . . . . 65
E.13.1 About the Company . . . . . . . . . . . . . . . . . . . 65
E.13.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 65

E.14 N — MaXware AS . . . . . . . . . . . . . . . . . . . . . . . . 67
E.14.1 About the Company . . . . . . . . . . . . . . . . . . . 67

v



E.14.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 67
E.15 O — Finale Systemer AS . . . . . . . . . . . . . . . . . . . . 68

E.15.1 About the Company . . . . . . . . . . . . . . . . . . . 68
E.15.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 68

E.16 P — Well Diagnostics AS . . . . . . . . . . . . . . . . . . . . 70
E.16.1 About the Company . . . . . . . . . . . . . . . . . . . 70
E.16.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 70

E.17 Q — AKVAsmart ASA . . . . . . . . . . . . . . . . . . . . . 72
E.17.1 About the Company . . . . . . . . . . . . . . . . . . . 72
E.17.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 72

E.18 R — Vega SMB AS . . . . . . . . . . . . . . . . . . . . . . . 74
E.18.1 About the Company . . . . . . . . . . . . . . . . . . . 74
E.18.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 74

E.19 S — Geodata AS . . . . . . . . . . . . . . . . . . . . . . . . . 75
E.19.1 About the Company . . . . . . . . . . . . . . . . . . . 75
E.19.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 75

E.20 T — Egroup ASA . . . . . . . . . . . . . . . . . . . . . . . . 76
E.20.1 About the Company . . . . . . . . . . . . . . . . . . . 76
E.20.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 76

E.21 U — ErgoEphorma AS . . . . . . . . . . . . . . . . . . . . . . 77
E.21.1 About the Company . . . . . . . . . . . . . . . . . . . 77
E.21.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 77

E.22 V — Auticon AS . . . . . . . . . . . . . . . . . . . . . . . . . 79
E.22.1 About the Company . . . . . . . . . . . . . . . . . . . 79
E.22.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 79

E.23 W — SYSteam AS . . . . . . . . . . . . . . . . . . . . . . . . 81
E.23.1 About the Company . . . . . . . . . . . . . . . . . . . 81
E.23.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 81

E.24 X — Deriga AS . . . . . . . . . . . . . . . . . . . . . . . . . . 83
E.24.1 About the Company . . . . . . . . . . . . . . . . . . . 83
E.24.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 83

E.25 Y — NetIT AS . . . . . . . . . . . . . . . . . . . . . . . . . . 84
E.25.1 About the Company . . . . . . . . . . . . . . . . . . . 84
E.25.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 85

vi



List of Tables

1.1 Project Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Data Collection Techniques . . . . . . . . . . . . . . . . . . . 11

6.1 Extent of Code Reuse — Codification . . . . . . . . . . . . . 25
6.2 Effects of Code Reuse — Codification . . . . . . . . . . . . . 25
6.3 Models of Code Reuse — Codification . . . . . . . . . . . . . 26
6.4 Interview Summary . . . . . . . . . . . . . . . . . . . . . . . . 27

E.1 Participating Companies . . . . . . . . . . . . . . . . . . . . . 48

vii



List of Figures

1.1 Thought Diagram for Reuse Topics . . . . . . . . . . . . . . . 3

3.1 Main Steps of the Research Process . . . . . . . . . . . . . . . 10

D.1 Reuse Model 1 — Project Oriented . . . . . . . . . . . . . . . 44
D.2 Reuse Model 2 — Reuse Through Separate Project . . . . . . 45
D.3 Reuse Model 3 — Component Producer . . . . . . . . . . . . 45
D.4 Reuse Model 4 — Domain Producers . . . . . . . . . . . . . . 46

viii



Chapter 1

Introduction

Proper reuse of code increases the speed of software develop-
ment projects.

- Rickard Öberg1

1.1 Motivation

Since I first started programming four years ago, I have produced a lot of
code. Different projects and assignments meant writing different code, but
more and more often I found myself thinking “Oh, I’ve done this before!”
This was followed by a intense search through directories and files to find
where exactly I had this piece of code. More often than not I came up
with nothing and had to program the same code over again. Every time,
I thought to myself “If only I had a personal code library”. In addition to
my own code I have also had access to others’ code in group projects and
assignments. It would be nice to have this code in a library as well. But the
time and efforts needed to create my own library of re-usable code seemed
to be greater than I could afford. This seemed to be the case for many of
my classmates as well.

While I was in the process of deciding on a subject for my fifth year project,
I went to my supervisor to get some advice on what to choose. We discussed
several topics, amongst others code reuse. This again started me thinking
about my own lack of reusable code and also made me wonder about how
common code reuse really is. When I start working as a programmer, one of
the first things I will probably do is create a personal system for organizing
code and code snippets that I think I will be using often. In relation to

1Quoted with permission

1



CHAPTER 1. INTRODUCTION 2

this I wondered: How common is code reuse in the software industry to-
day? What kind of code reuse systems exist and are actually in use? What
are the expected and experienced effects of reuse? I searched the web for
information, and found several statements claiming that code reuse most
certainly is the way to go and that reuse saves time and money in software
development. For more information on this, see the Prestudy, section 2.1.
The subject of code reuse indeed seemed intriguing and I decided that code
reuse would be the subject of my project.

1.2 Problem Definition

When I had decided that I wanted to have code reuse as the main subject for
my project, I had to concretize what exactly it was I wanted to do. First and
foremost I decided that I would only consider object oriented programming
languages, as these are the kind of languages I know best. After discussing
the topic with my supervisor, searching on the web and coming up with ideas
I had some basic notion of what I wanted to do. First I made a thought
diagram, displayed in figure 1.1. This diagram contained several topics and
sub-topics which I felt would be interesting to work on. I then tried to
group some of these topics together to form suitable project subjects. I
also considered some possible subjects for my Master’s thesis based on the
potential subjects for my project. Some examples are included in table 1.1.
I decided that I wanted to do some research on what kind of tools and

Project Gather information about and test tools
Thesis Develop tool(s)
Thesis Gather experiences, look at existing procedures

or develop new procedures

Project Look at tools and procedures
Thesis Develop tool(s)

Project Learn about tools and procedures
Thesis Develop procedure(s)

Table 1.1: Project Ideas

possibly procedures specialized for reuse exist, and perhaps test some of
them. Depending on the results from the project, I could try to develop a
tool myself or do more thorough research on the tools and methods I studied
in the project for my Master’s thesis. With some help from my supervisor
and some more thinking I decided to use the project title “Reuse of code in
object oriented software development” and the following project description:
“Proper reuse of code increases the speed of software development projects.”
(Rickard Öberg) In this respect, tools and procedures for code reuse and



CHAPTER 1. INTRODUCTION 3

Code re-use

Procedures

Tools

Experiences

Gather information

Test
Develop

ExistingDevelop/suggest

Make my own

Collect others’

Figure 1.1: Thought Diagram for Reuse Topics



CHAPTER 1. INTRODUCTION 4

experiences with reuse are important. The project is about examining and
assessing the present solutions for reuse of object oriented code.

Reuse is, however, a loose term. I had already decided that I wanted to look
at the lower level of reuse; the reuse of source code. This in contrast to higher
level reuse such as patterns or process reuse/experience databases. There
are still many definitions of and ways to interpret “code reuse”. I wanted
the overview of how the software industry reuses code to be as general as
possible. Thus, I decided not to exclude any interpretations of reuse. A
wide definition which describes the essence of code reuse is: Code is reused
when it 1) already exists, and 2) is chosen over the possibility to write new
code.

1.3 Goals

The project description was pretty general. To be a bit more specific, I
made a list of things I wanted to achieve, i.e. goals for my project work.
The main goal was to learn about tools and methods for code reuse and to
find out how common code reuse is. It was important for me to learn about
the tools and procedures which are actually used in the software industry
today. I deconstructed this into the following sub-goals:

• Get an overview of how common code reuse actually is

• Get to know why people choose to reuse code and what they get out
of it

• Learn about the specialized tools software developers are using for
code reuse

– What kind of tools and how they are used

– How the developers feel about using the tools

– How useful the tools are

• Learn about the specialized procedures used in connection with reuse

– What kind of procedures are used and how they are used

– How the developers feel about using these procedures

– How useful the procedures actually are



CHAPTER 1. INTRODUCTION 5

1.4 Report Outline

The rest of this report is organized as follows:

Prestudy and Approach The prestudy provides information on various
aspects, or effects, of code reuse; such as saved time, improving quality,
and marketing advantages. A brief explanation of how I wanted to
approach the subject of code reuse is also included in this chapter.

Research Method Theory In this chapter, general theory on research
processes is presented together with theory on a specific type of re-
search; surveys.

Research Planning This chapter describes the planning of the research
process, based on the theory in the preceding chapter. The plans
include definition of objective, definition of target population, sample
selection, survey methods, interview guide, and plans for data analysis.

Research Implementation This chapter describes the implementation of
the plans from the previous chapter.

Results This chapter contains the research results and a discussion of the
results.

Evaluation This chapter contains an evaluation of the research process and
the process of extracting information from the interview notes.

Conclusion and Further Work This chapter contains a conclusion, and
some suggestions for further work.



Chapter 2

Prestudy and Approach

In this chapter I will describe some of the aspects of code reuse commonly
brought up in the resources I found on the Web. I will also explain in brief
how I wanted to approach the subject of code reuse in order to reach the
project work goals described in section 1.3.

2.1 Prestudy

First a distinction: There is a difference between code reuse and proper code
reuse. Just as proper reuse can have a positive effect of the development,
poor reuse can have a negative effect. This is important to have in mind,
and it applies to every aspect of code reuse. Through the rest of this chapter
when I mention the positive effects of reuse I am referring to proper reuse.

The aspect of code reuse which is generally the most emphasized is time, and
thereby costs. Rickard Öberg states that “Proper reuse of code increases
the speed of software development projects”. The fact that reuse saves
development time is mentioned on lots of Web sites, both software developing
companies’ Web sites and educational Web sites. Also reuse and object
oriented programming are linked through statements naming the possibility
of reuse as an advantage of using object oriented programming languages.
Time is saved by reusing code for several reasons. One of the most obvious
ways reuse saves time is by reducing the time spent writing code. Time can
also be saved when it comes to working out how to translate an idea into
code, as this might already have been done in already produced, reusable
code. Time can also be saved on testing if the reusable code has already been
tested thoroughly or if a specialized test system (e.g. a class or a module)
is provided alongside it. When a piece of reusable code which is specific to
one matter (e.g. Web certificates) is produced, it can save time by allowing

6



CHAPTER 2. PRESTUDY AND APPROACH 7

developers who don’t have deep skills in this matter to save some of the time
it takes to learn all there is to know about the matter.

One clear effect of saving time is saving money. Another, perhaps not so
obvious, effect is goodwill. When the company is able to deliver the product
in a shorter amount of time, the customers will probably be more satisfied.
Another effect of reuse, particularly modular reuse, is that as more reusable
modules are produced, the developers might not need to do much more
than putting modules together to produce a new software product. This
also helps provide a relatively accurate price estimate.

Another important aspect is risk and quality. The fact that the program
code already has been used for a while can provide valuable information
as to the quality of the program code. This can be stability, performance,
scalability, and security. Sometimes the code is “tweaked” in time, remaining
bugs are found and corrected, possibly producing better code. As previously
mentioned, however, one has to take care when reusing code. One example of
poor reuse is the catastrophic error which occurred during the launch of the
first Ariane 5 launcher in June 19961. In this case, software used in Ariane
4 had been reused for Ariane 5 and it was decided that it would not be wise
to make changes in software which worked well on Ariane 4. Differences
in technical constraints from Ariane 4 to Ariane 5 caused the software to
malfunction during launch, resulting in the crash of Ariane 5. This goes to
show that code which works well in one context doesn’t necessarily work
well in another context.

One way do avoid some of the problems connected to reuse is to produce eas-
ily understandable, self-documenting code and generating documentation.
Good documentation of for example functionality, context and explanation
of programming choices made (e.g. one algorithm over another) will help
the developers wishing to reuse the code. This documentation will enable
them to assess whether the code is appropriate for their use, and if they
wish to change something, the documentation will help them understand
how best to do it.

2.2 Approach

As previously stated, the main goal of this project was to discover how
common reuse is and learn about tools and methods for code reuse. I wanted
to learn about the tools and techniques which were actually in use. Learning
about all the relevant aspects of all available tools and procedures would

1See http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf for the report made by the in-
quiry board after the accident.



CHAPTER 2. PRESTUDY AND APPROACH 8

take too much time if I in addition was going to find out which of them were
actually used, by whom, how and what the effects of using them were. I
could not find any recent studies about this, so I decided to conduct my own
study of the “state of the art”. I figured the easiest way to find out about
the currently used tools and procedures was to ask the people who might
use them. This would also make a good basis for my Master’s thesis. The
next chapter will contain some theory regarding how such studies should be
performed.



Chapter 3

Research Method Theory

In this chapter I will present some general theory on research processes
(section 3.1). As I wanted to communicate with software developers in order
to reach my project work goals (section 1.3), I have chosen to focus on theory
describing a type of research which includes oral communication: Surveys.
Included in this chapter is general information on surveys (section 3.2) and
the key steps in planning a survey (section 3.3).

In planning and conducting this project I have found several sources of
information helpful. Fledsberg ([1]) describes the general theory on research
methods, mainly inspired by Ringdal ([2]). Galobardes ([3]), Scheuren ([4])
and Boone ([5]) focus on surveys, which is also described by Wohlin ([6]).

3.1 Research processes

[2] states that the Scientific method is procedures or techniques to answer
research questions. This includes, amongst other things, techniques to col-
lect data and analyzing these. The author goes on to remark that without
method knowledge, assessments of choice of research arrangements or results
based on statistical techniques become shallow. [2] presents the research
process as consisting of the steps presented in figure 3.1. This is, however,
a simplified picture which hides the fact that more often than not, one has
to turn and go back one or more steps.

3.1.1 Rough Problem Definition and Research Questions

The first step, Rough problem definition, consists of an idea which stems
from the researcher’s own interests or/and from users or customers. This

9



CHAPTER 3. RESEARCH METHOD THEORY 10

1. Rough problem definition

2. Research questions

3. Choice of design

4. Data collection

5. Data analysis

6. Reporting

Figure 3.1: Main Steps of the Research Process

idea has to be transformed into research questions (step 2). This transfor-
mation might be based on previous research and theory, and the research
questions may take the form of questions or hypotheses. Questions are
open (e.g. “Is there any relationship between the number of storks and the
number of childbirths in the country?”) while hypotheses are claims about
reality (e.g. “There is a positive linear relationship between the number of
storks and the number of childbirths in the country.”).

3.1.2 Choice of design

Step number three, Choice of design, constitutes making a rough sketch of
how a specific investigation should be formulated. A design is based on
several choices, for example whether the investigation should be qualitative
or quantitative. Qualitative methods result in text data while quantitative
methods result in quantifiable data. It is also possible to construct a de-
sign which combines qualitative and quantitative methods. The two most
common qualitative designs are field observations and conversational inter-
views. Surveys and experiments are the most common quantitative research
designs. General information on surveys is included in section 3.2, while a
description of how to plan a survey is included in section 3.3.



CHAPTER 3. RESEARCH METHOD THEORY 11

3.1.3 Data Collection

Data collection is the next step (step 4). The first choice to be made is
whether data collection is necessary. Sometimes data has already been col-
lected, removing or reducing the need to collect data. There are many ways
to collect data, some of which are represented in table 3.1.

Technique Used in

Questionnaire Survey design

Interview Telephone interview Survey design and
Visitational interview quantitative investigations

Observation Field observation Quantitative investigations
Laboratory observation

Table 3.1: Data Collection Techniques

Before data is collected, however, it is important to make a selection of
subjects. There are two kinds of reasoning behind the choice of subjects. If
it is desirable to have a selection which is representative of the population,
the selection has to be performed using statistical criteria. If, however, only
a few cases are to be selected, it is better to make the selection based on
strategic reasons.

3.1.4 Data Analysis

After the data collection, the data should be analyzed (step 5). Before the
data can be analyzed, however, it has to be registered, preferably electron-
ically. The way in which the data is registered depends on the purpose of
the data collection. Registering data from surveys might be done simul-
taneously with the data collection during interviews where the questions
are both read from and registered directly to a computer. For qualitative
research, the data matrix is not quite as useful. Often, recording tapes or
video is used during the interviews, or the interviewer takes notes during the
interview. In any case, the data from the interviews are stored electronically.

3.1.5 Reporting

The final step of the research process is reporting (step 6). The results
may be reported in a journal, report, Master’s thesis, dissertation, or book.
The most important way of reporting research results is presently journals.
There is an important divide between professional publications and popular-
izations; the latter gives a wider audience than the former, whose audience
mainly is other scientists.



CHAPTER 3. RESEARCH METHOD THEORY 12

3.2 General Information on Surveys

The information in this section is taken from [6].

Surveys are conducted when the use of a technique or tool already has
taken place, or before it is introduced. It could be seen as a snapshot of the
situation, used to capture the current status. Surveys could, for example,
be used for opinion polls and market research.

When performing survey research the interest may be, for example, to study
how a new development process has improved the developer’s attitudes to-
ward quality assurance. A sample of developers is selected from all the
developers at the company. A questionnaire is constructed to obtain in-
formation needed for the research. The questionnaires are answered by the
sample of developers. The information collected is then arranged into a form
that can be handled in a quantitative or qualitative manner.

Survey characteristics

The purpose of sample surveys is usually to understand the population from
which the sample was drawn. For example, by interviewing 25 developers on
what they think about a new process, the opinion of the larger population
of 100 developers in the company can be estimated.

Surveys have the ability to provide a large number of variables to evaluate,
but it is necessary to aim at obtaining the largest amount of understand-
ing from the fewest number of variables since this reduction also eases the
analysis work.

Survey purposes

The general objectives for conducting a survey is one of the following:

• Descriptive

• Explanatory

• Explorative

Descriptive surveys can be conducted to enable assertions about some pop-
ulation. This could for instance be determining the distribution of certain
characteristics or attributes. The concern is not about why the observed
distribution exists, but what that distribution is.

Explanatory surveys aim at making explanatory claims about the popula-
tion. For example, when studying how developers use a certain inspection



CHAPTER 3. RESEARCH METHOD THEORY 13

technique, we might want to explain why some developers prefer one tech-
nique while others prefer another. By examining the relationships between
candidate techniques and several explanatory variables, we may try to ex-
plain why developers choose one of the techniques.

Finally, explorative surveys are used as a pre-study to a more thorough
investigation to assure that important issues are not forgotten. This could be
done by creating a loosely structured questionnaire and letting a sample from
the population answer it. The information is gathered and analyzed, and
the results are used to improve the later, full investigation. The explorative
survey does not answer the basic research question, but it may provide new
possibilities that should be analyzed and should therefore be followed up in
the more focused or thorough survey.

Data collection

The two most common means for data collection are questionnaires and
interviews. Questionnaires could both be provided on paper or in some
electronic form, e.g. e-mail or Web pages.

Letting interviewers handle the questionnaires by telephone or face-to-face
instead of letting the respondents fill them in themselves, offers a number
of advantages:

• Interview surveys typically achieve higher response rates than, for ex-
ample, mail surveys.

• An interviewer generally decreases the number of “do not know” and
“no answer”, because the interviewer can answer questions about the
questionnaire.

• It is possible for the interviewer to observe the interviewee and ask
questions.

3.3 Key Steps in Planning a Survey

[3] presents seven steps to be performed when planning a survey. These key
steps contain much of the same as the research process described in [2]. The
seven key steps are:

• Definition of objective: Clearly specify the aims and purpose of the
survey and decide the study design.

• Definition of target population: State the target population of the sur-
vey in terms of place, time and other relevant criteria and determining



CHAPTER 3. RESEARCH METHOD THEORY 14

who will be excluded.

• Sample: Decide on the sample selection and sample size.

• Survey methods and quality assurance: Activities directed at ensuring
data quality before data collection begins; validity and reliability are
important keywords. Design the questionnaire and test it, develop the
manual of operation.

• Implementation of survey and quality control procedures: Monitor and
maintain the quality of the data while conducting the study.

• Statistical analysis: Analyze the collected data.

• Reporting and dissemination of results



Chapter 4

Research Planning

I initially chose to use surveys as my main source of information. One of
the reasons for this was the description of surveys I found in [6]:

Surveys are conducted when the use of a technique or tool al-
ready has taken place [...] It could be seen as a snapshot of the
situation to capture the current status.

This seemed to be exactly what I wanted. There are many ways to conduct
a survey and I felt that I would be able to plan and conduct one which
would fit my constraints of time and money and still provide the information
I wanted. The detailed aspects of research focus, research questions and
research process are described later in this chapter.

I found the key steps in planning a survey presented in [3], described in
section 3.3, to be quite appropriate for my study, with some adjustments.
Hence I started following the “key steps recipe”, described in the following
section. In order to make the connection visible, I several places in this
chapter refer to the research process steps introduced in the previous chapter
(section 3.1).

4.1 Following the Key Steps

As [3] states,

[...] choices are made at each step of the survey. These depend
on scientific, practical, and financial constraints.

The choices made during the survey have to be justified and there has to be
records of the decisions in the protocol of the study, the document describing

15



CHAPTER 4. RESEARCH PLANNING 16

the study and all procedures used in the survey. The “protocol of the study”
is in this case the present chapter.

The main steps of planning a survey are Definition of objective (covered
in section 4.1.1), Definition of target population (section 4.1.2), Sample
selection (section 4.1.3) and Survey methods and quality assurance (sec-
tion 4.1.4). This section will explain how I planned the survey by describing
each of these steps in turn.

4.1.1 Definition of Objective

In order to conduct a survey, the aims and purposes of the survey had to be
specified. I also had to decide on the study design. This is similar to step 2
and 3 in [2] (see section 3.1.1 and 3.1.2). The following two sections might
also be considered as parts of step 3.

The purpose of this survey was to investigate the current solutions for reuse
of object oriented code in the Norwegian software industry. The investiga-
tion concerned various aspects of the solutions in use, as described in the
section Goals (1.3):

• Get an overview of how common code reuse actually is. (Does “every-
body” reuse code?)

• Get to know why people choose to reuse code and what they get out
of it. (What are the desired and achieved effects?)

• Learn about the tools which are specifically developed for code reuse,
and which software developers are using in practice:

– What kind of tools and how they are used

– How the developers feel about using the tools

– How useful the tools are

• Learn about the procedures which are specifically developed for code
reuse, and are used in practice:

– What kind of procedures are used and how they are used

– How the developers feel about using these procedures

– How useful the procedures actually are

I did not aim at making generalizations from the results of the survey; the
survey was carried out primarily in order to get an overview of the situation
concerning code reuse in a sample of companies in Norway at the present
time. The results of the survey will be used as a basis for my Master’s thesis



CHAPTER 4. RESEARCH PLANNING 17

during spring 2005. This meant that the study is an explorative survey.
(The different types of surveys are described in section 3.2.) Due to the
nature of the project, the study took place during a three month period in
the fall 2004.

4.1.2 Definition of Target Population

As described earlier, the survey should answer questions about object ori-
ented code reuse in the Norwegian software industry. The target population
of this survey was therefore the current software developers and software
development departments in companies in Norway which produced software
using (and reusing) object oriented code. The sample would contain only
companies producing software for sale, not companies producing software
for internal use only. The reason for this limitation was that the software
development process when the software is to be used internally differs from
what it is when the software is produced to be sold to external customers.
I wished to concentrate on code reuse in the process leading to a software
product for sale.

4.1.3 Sample Selection

As a survey of the complete population was not feasible in this project, I
had to use only a sample from the population. If I wished to be able to
generalize the results of the survey, I would have needed to ensure that the
sample was representative of the target population. As I simply wished to
get an overview of the situation to get a basis for my Master’s thesis, I didn’t
have to be quite as strict when selecting the sample. There were still several
aspects to consider;

• size of the company (measured by for example the number of employ-
ees, annual profit, or market share)

• company type (e.g. software product domains)

• maturity of the company (e.g. number of years the company has ex-
isted)

• presence of a software development department

• size of the development department, if one exists (e.g. measured by
number of employees)

• maturity of the development department, if one exists (number of years
the development has existed, experiences in different domains)

• programming languages used (object oriented languages)



CHAPTER 4. RESEARCH PLANNING 18

Before I selected a sample of the population, I had to contact several compa-
nies. The number of companies I initially contacted had to be substantially
larger than the number of companies I wanted to have in the final sample. I
decided to initially select participants quite randomly, based on the category
“Computer software and development”1 in “Gule Sider R©”2. This selection
of participants would hopefully result in a wide variety of companies, giving
me a sample containing companies which differ with respect to the above
mentioned aspects.

4.1.4 Survey Methods and Quality Assurance

This subsection concerns the survey methods and the activities directed to
ensure data quality before data collection begins. The activities might be
considered as parts of step 4 in [2] (see section 3.1.3).

I planned to create a questionnaire which would be administered over the
telephone. I chose using the telephone for the following reasons:

• It is an effective method for collecting the information. This is impor-
tant, as the time period in which I had to conduct the survey is short
— less than three months.

• The “presence” of an interviewer can increase the cooperation rate
and make it possible for respondents to get immediate clarifications.[4]
This means that the number of “do not know” and “no answer” will
decrease, hence the quality of the survey will increase.

• Being able to talk to the respondents means that I could ask questions
and get a better understanding of the respondents’ answers.

One way to influence the respondents’ understanding and participating in
the survey, and thereby the quality of the survey, is to have a well con-
structed and designed questionnaire. As the survey would be conducted via
the telephone, the appearance of the questionnaire was not important, but
things such as wording and logical structure were. Before the actual sur-
vey, I planned to test the questionnaire and my interviewing skills via the
telephone. My subjects would be a few fellow students who had the right
level of knowledge of programming and tools to assess wording and logical
structure.

At this stage in the survey planning, the manual of operation would be
created. This is a document which contains a detailed description of the
procedures to be used in the survey. However, I started calling software
producing companies to get participants for the survey before this work was

1In Norwegian: “Dataprogramvare og -utvikling”
2http://www.gulesider.no



CHAPTER 4. RESEARCH PLANNING 19

finished. In this process I realized that a survey with a strict questionnaire
would not be the best way to achieve the project goals (see section 1.3). The
reason for this change of heart is explained in the chapter Evaluation, section
7.1.3. In short, one of the developers I spoke to practically functioned as
a test person for the preliminary questionnaire, and the result was that I
decided that an interview guide would be more appropriate for my purposes.

4.2 Interview Guide

I planned to use my unfinished questionnaire design (included in appendix B)
as the basis for an interview guide. [2] states that interview guides vary from
keywords ordered by subject to a set of formulated open questions. I chose to
use keywords, as this would enable a more open conversation than previously
formulated questions. During the interviews, I planned to write notes using
my laptop computer.

4.3 Plans for Data Analysis

Step 5 in [2] is Data analysis (see section 3.1.4). [1] and Kvale ([7]) present
a method for analysis which consists of categorizing the contents of the in-
terviews. Long statements are reduced to simple categories, and are used to
indicate the existence (or the opposite) of a phenomenon (e.g. “no tools”,
“procedures used”), and possibly the strength of the phenomenon (e.g. on
a scale from 1 to 5). This method will structure and reduce a longer text
into a few tables and/or figures. I felt this would be a good way to extract
the essences from the interviews, and decided to use this method for ana-
lyzing the collected data. To ensure the correctness of the collected data, I
planned to write interview transcriptions and send them to each interviewee
for verification and possibly correction of misunderstandings etc.

This concludes the planning. The implementation of the plans are described
in the following chapter.



Chapter 5

Research Implementation

In this chapter, I will describe the implementation of the research plans
described in the previous chapter. Modeling the questionnaire is described
in section 5.1, while sample selection is covered in section 5.2, and making
the interview guide is described in section 5.3. Performing the interviews is
the topic of section 5.4, and the process of writing interview transcriptions
and getting them verified by the interviewees is covered in section 5.5.

5.1 Modeling the Questionnaire

To prepare for the survey, I started making a questionnaire. I used the list
in section Definition of Objective (4.1.1) as a starting point, and developed
the unfinished questionnaire included in appendix B. As I was modeling the
questionnaire, I was also trying to find participants for the survey. After
a while, I did no longer wish to use a questionnaire, and the unfinished
questionnaire was never completed. For an explanation of this, see the
following section.

5.2 Sample Selection

According to the plan, I used Gule Sider R©to find participants for what was
then planned to be a survey. I started out with 53 possible subjects, selected
randomly from the list generated by selecting the “Computer software and
development” category, except for one criterion: I had to be able to deter-
mine from the information in the generated list and the companies’ Web
pages that the companies actually were producing and selling software. I
contacted the companies by telephone and explained why I contacted them.

20



CHAPTER 5. RESEARCH IMPLEMENTATION 21

In most cases the first person I spoke to was a switchboard operator, who
referred me to a software developer/person in the software development de-
partment. I explained why I called, and if the person seemed interested in
participating, I offered to send an explanatory e-mail (included in appen-
dix A).

About half of the companies I contacted didn’t wish to participate for differ-
ent reasons, generally too little time was the reason given. After contacting
all the companies on my list of 53, I had appointments with 25 participants.
One of the participants did, however, not answer my call at the scheduled
time or at any later time. Nor did he answer e-mails, and so he did not
participate in the interview process. This left me with a final list of 24
interviewees.

During the period in which I made appointments, one of the people I spoke
to explained to me that he didn’t have the time for an appointment later,
but he had the time to participate at the time I contacted him. This, as
explained more thoroughly in the chapter Evaluation (section 7.1.3), caused
me to revert from the plan of using a questionnaire. I decided that an
interview guide wold be a better help when talking to the participants.

5.3 Making the Interview Guide

As planned, I used the unfinished questionnaire design (see appendix B)
as the basis for creating the interview guide. As described in the research
plan (section 4.2), I created an interview guide consisting of keywords. This
would enable me to ask questions freely, but the guide would still remind
me of the information I wanted. I put the keywords in the order in which
I planned to discuss them, starting with the “simplest” information (which
programming language(s) are used). The last topic, how reuse is done in
practice, might have been covered earlier in the interview, and thus might
not need to be addressed separately. The interview guide is included in
appendix C.

5.4 Performing the Interviews

The interviews were conducted during a four week period in the autumn of
2004. I tried to conduct the very first interview using the unfinished ques-
tionnaire, but during the interview, I realized that a questionnaire would
be too specific and not have enough room for follow-up questions etc. The
rest of the interviews were conducted using the interview guide (see appen-
dix C). At the beginning of each conversation, I informed the interviewee



CHAPTER 5. RESEARCH IMPLEMENTATION 22

that I was taking notes as we spoke, and that this might cause some pauses
in the conversation, and I might ask them to repeat what they just said. I
used my laptop computer for writing the notes. The interviews lasted from
10 minutes to about one hour. A summary of the interviews is included in
chapter 6, and the transcriptions of the interviews are included in appen-
dix E together with some more information on the transcriptions and a list
of the companies.

At the end of each conversation, I asked the interviewee if I could contact
them by e-mail or telephone at a later time if I had any questions, and
none of the interviewees had a problem with this. In the e-mails sent to
most of the interviewees (see appendix A), I explained that the information
I gathered would be anonymized. At the end of the interviews, I asked
the interviewees how anonymous the interviewee and the company wished
to be. Most of the interviewees told me I could use as much information
about them and the company as I wished in the report, but some told me
they wanted to see the transcription before I put it in the report. This
was actually my next, and last, question to the interviewees; if I could
send the interviewee the transcript from the interview for verification. All
interviewees agreed to this. The verification would consist of two parts;
verifying that the information was correct, and verifying that it was OK for
the interviewee and the company that the information was included in the
report.

5.5 Interview Transcriptions

As the notes I made during the interviews were highly informal and proba-
bly not understandable to anyone but me, I had to “translate” them in some
way to make them understandable to others. I decided to translate them
into English, as the report is written in English. I also chose not to include
everything which was said during the interviews; I excluded comments such
as “C++ really is not the way to go, if you want to be successful, you have
to use C#”, which I felt would not be useful in this context. The origi-
nal notes were saved, although not included in this report. The interview
transcriptions are included in appendix E.

When I had finished translating the interviews, I sent the results (both the
transcriptions themselves and the information about the company which ac-
companies the transcriptions in appendix E) by e-mail to each interviewee
for validation. In this e-mail I asked again how anonymous the information
from the interview should be. I also asked them to check that the infor-
mation was correct. As I was running out of time, I had to receive the
validations in a relatively short amount of time (for some, one and a half



CHAPTER 5. RESEARCH IMPLEMENTATION 23

weeks, for others, four days). I had set a deadline for the latest time I had
to receive the verifications, and after this deadline I phoned the ones who
had not answered, to get their verification. The final result was that all the
transcriptions were verified, just in time to be included in the report. None
of the interviewees or companies wanted to be anonymous.



Chapter 6

Results

In this chapter, a summary of the interview transcriptions (section 6.1) and
a discussion of the results (section 6.2) are included. The full interview
transcriptions are included in appendix E.

6.1 Interview Summary

To enable easier access to the results of the interviews, I have chosen to make
a summary of the interviews, in the form of a table. Table 6.4 contains the
essential information gathered from each company during the interviews.
Column 1 of the table contains the company names. International compa-
nies are marked with a star (*), and consultancy firms are marked with a
plus sign (+). Consultancy firms are generally less domain specific than the
other companies, which also makes the plus sign a possible indicator of a low
level of domain specialization. Column 2 indicates the number of employees
in the company and the number of software developers. The two numbers
are separated by a forward slash (/). For international companies, only the
number of employees in Norway are listed. Column 3 contains the extent of
reuse, indicated by the abbreviations given in table 6.1. Column 4 describes
which effects of reuse were mentioned during the interview, indicated by the
abbreviations given in table 6.2. Some information on effects of code reuse
is given in the Prestudy, section 2.1. As all the interviewees stated that the
achieved effects were the same as the desired effects (to different extents),
I have chosen not to list the desired and achieved effects separately. I have
tried to make the effect categories general enough to include similar state-
ments; both the statement “we reuse to save time” and the statement “a
desired effect of code reuse is higher efficiency in software development” are
included in category E: Increased efficiency. Still, I have tried not to make

24



CHAPTER 6. RESULTS 25

Abbreviation Extent of reuse

1 Reuse is left up to each developer

2 There is a development department policy on
reuse

3 There is a company policy on reuse

A There is no common base of reusable code which
is separated from other code

B There is a common base of reusable code which
is separated from other code

Table 6.1: Extent of Code Reuse — Codification

the categories too wide. I have for example chosen to list stability and qual-
ity as two different effects, although stability might be considered a form of
quality. This is because I wished to express the importance of stability over
(or in addition to) general quality for some interviewees.

Abbreviation Effect

E Increased efficiency, i.e. saved time (and thereby
money)

Q Improved quality of software

S Improved stability of software/fewer errors

T Simplified testing

U Uniformity (of how problems are solved, of ap-
pearance and functionality)

P More accurate time and price estimates

M Marketing advantages (experience and ease of
software development)

Table 6.2: Effects of Code Reuse — Codification

The first part of column 5 indicates whether a tool specifically produced for
reuse is employed, denoted by “No” for no tools employed and “Yes” when
tools are employed. The second part indicates the use of one or several reuse
specific procedures. “No” indicates no presence of specific reuse procedures,
“Yes” indicates the presence of formal procedures, while “yes-” indicates the
presence of some kind of reuse procedure which is not formalized. The two
parts of column 5 are separated by a forward slash (/). Column 6 contains
a classification of reuse; how reuse is organized. This is based on the models
of reuse described in appendix D, and it is codified as described in table 6.3.
If neither of these models fit the reuse organization of a company, this is
denoted by a single dash (-).

Note: Fundator and Lydia are both in a special situation, as they are in
the final stages of adopting new systems for software development. This



CHAPTER 6. RESULTS 26

Abbreviation Reuse model

PO Project oriented reuse

SP Separate reuse project

CP Reuse with component producer

DP Reuse with domain producers

Table 6.3: Models of Code Reuse — Codification

summary describes the situations in the companies before these systems
were adopted.

6.1.1 Worth Noting

Some of the interviewees made statements which are worth noting, but aren’t
of such a nature that they fit into the interview summary table. I have
chosen to include these statements here, to make the reader aware of their
existence.

The first quote is taken from section E.13.2, the interview with Tor Haugen
at Electric Farm:

Reusable components can also improve the process of starting
a new project. When the members of the development team
meet to start a project, they have to get an idea of what is to
be done. Sometimes the developers may feel “lost” and it may
seem like they have to start from scratch. In this situation, it
is useful to have reusable components from a previous project
which resembles the new project. This makes things easier for
the developers by reducing the need for discussions and clarifi-
cations of how functionality is to be implemented et cetera, as
some parts already are implemented. The resemblance to the
older project and reusing code from that project help make the
new project more “recognizable” as well, and in this way, reuse
helps create continuity between projects.

The following quotes were taken from section E.21.2, the interview with
Thomas Lünell at ErgoEphorma:

A negative effect of reuse is possible loss of competence. How
something works is easily forgotten, and as components are re-
used over and over, the developers might forget the reasoning
behind the component (how does it work, why is a functionality
implemented in a certain way, etc.). In this case, documentation
is essential. It might also be an advantage to sometimes rewrite
code in order to maintain a certain level of knowledge.



CHAPTER 6. RESULTS 27

Tool/
Company Employees Ext. Effects Procedure Org.

Ajour Media 6/2 3B EQS No/yes- PO

Antares Gruppen+ 30/17 1A EQS No/No -

ErgoSolutions+ 300/150 3B ET No/No PO

Fundator+ 17/14 1A EQTPM No/No -

TietoEnator+* 1100/500 3B EQS Yes/Yes SP

Fronter* 24/6 3A EQSU No/No -

QS Manager 3/2 1A E No/No -

Escio 7/2 3B E No/yes- PO

Cintra Software
Engineering+ 2/2 3A EQ No/No -

Lydia 11/4 1A ET No/No -

adramatch* 35/3 2A ET No/No -

Electric Farm+ 23/19 3B EQSTUM No/yes- PO

MaXware*+ 33/10 1A E No/No -

Finale Systemer 14/8 2B EQ No/No PO

Well Diagnostics 10/5 1A EQT No/No -

AKVAsmart* 100/12 2A EQS No/No -

Vega SMB 9/4 1A EQ No/No -

Geodata 80/22 2B EQU No/No PO

Egroup+ 200/5 2A EQS No/No -

ErgoEphorma+ 200/20 1A EQS No/No -

Auticon* 37/5 2B ETU No/No PO

SYSteam* 60/25 2B ESU No/No PO

Deriga 8/3 2B ES No/No PO

NetIT+ 9/2 1A ES No/No -

Table 6.4: Interview Summary



CHAPTER 6. RESULTS 28

Tools/utilities are often placed in separate directories (util). This
is done within each project, but seldom between projects, be-
cause nobody trusts the other developer(s) to have done a good
enough job making the utilities. This somewhat defensive atti-
tude is due to the fact that each developer stands responsible for
the code he writes and reuses, and so each developer is careful
when reusing other people’s code.

6.2 Discussion of Results

I will not try to make any generalizations to the entire population from the
results, but instead discuss these results alone. I will first look at the effects
of code reuse mentioned by the interviewees, then the extent of code reuse
and the organization of reuse. Finally, I will discuss the use of tools and
procedures.

6.2.1 Effects of Code Reuse

All of the 24 interviewees mentioned increased efficiency or saved time and
money (E) as an effect of code reuse. This was not surprising, as time is
an important factor in software development, and efficiency is the one effect
which is mentioned most often in the information I have gathered.

A total of 17 interviewees acknowledged some form of quality as an effect of
code reuse: 6 cited higher general quality (Q) as an effect of reuse, 8 spoke
of both stability (S) and quality (Q), while 3 mentioned improved stability
(S). This makes quality (Q) the second most often mentioned effect of code
reuse, being spoken of by 14 interviewees, and stability (S) the third in the
list, with 11 references. As software is becoming increasingly important in
the society, software quality is imperative, and the high “ratings” of quality
aspects are perhaps both a result of and an advantage for this development.

7 interviewees named simplified testing (T) as an effect of reuse. 5 inter-
viewees considered uniformity as a positive effect, while 2 mentioned that
code reuse gives marketing advantages. A single interviewee spoke of more
accurate time and price estimates as effects of reuse.

6.2.2 Extent of Code Reuse

14 of the 24 companies/development departments did not have a shared
base of reusable code separated from other code (A), while 10 did (B). 9
interviewees reported that reuse is left to ach developer (1). 8 development



CHAPTER 6. RESULTS 29

departments have a policy on reuse (2), while 7 companies have a policy on
reuse (3).

The combination which seems to be the most interesting is a company policy
on reuse (3), but not a common base of reusable code which is separated
from other code (A). My impression before the interviews was that “serious”
reuse would include some sort of a separate reuse storage. A company policy
on reuse indicates a serious take on reuse, but the lack of a separate base of
reusable code might seem a bit less “serious”. Only 2 companies have this
combination of policy and storage of code.

A combination which seems natural is a lack of policies on reuse (1) and
a lack of a common, separate base of reusable code (A). This occurs in
9 companies. Another natural combination is a company policy on reuse
(3) accompanied by a separate reuse storage (B). This is the case for 5
companies, which seem to be the most conscious of code reuse. There are
8 development departments with policies on reuse (2). 3 of these have no
common base for reusable code (A), while there are 5 where a common base
of reusable code exists (B).

6.2.3 Use of Tools and Procedures

When it comes to the employment of tools and procedures, there is a single
company which stands out. TietoEnator is the only company which has a
tool specialized for reuse. This tool, which was developed by the company,
imposes certain procedures on code reuse. For a description of the system,
see the interview transcription (section E.6). TietoEnator is an international
company, and is also the only company with more than a thousand employees
in Norway alone. The company has more than 15000 employees world wide.
The size of the company explains their need for a formalized system for code
reuse.

No other companies have tools which are created specifically for code reuse.
Some companies, however, have informal procedures for code reuse. There
were 3 interviewees who stated that the developers followed procedures for
reuse.

6.2.4 Organization of Code Reuse

Again, there is a single company which stands out. TietoEnator is the only
company which organizes reuse following a slightly advanced model; the
company has a separate reuse project. The organization doesn’t completely
follow this model, described in section D.2; the reusable code is developed
as parts of the projects, not by a separate, temporary reuse project. The



CHAPTER 6. RESULTS 30

organization at TietoEnator is, however, more complex than the first model,
where the projects identify and develop components and submit them to the
reuse storage: At TietoEnator, there is a separate department which deals
with code reuse in the sense of approval or disapproval of the component as
fit for reuse and possibly authorizing investments.

There are no companies following the two more advanced models of reuse
organization. 14 companies have no separate storage for reusable code, thus
not following any of the reuse models listed in appendix D. As mentioned
earlier, I feel this indicates a lack of serious commitment to code reuse.
Most of the companies with no separate base for reusable code have no
company or department policy of reuse, which strengthens the impression
of less commitment to code reuse.

Finally, there are 9 companies where code reuse follows model 1; project ori-
ented reuse (see section D.1). These companies separate reusable code from
other code in a reuse storage. The reusable code is identified and developed
by the projects, and it is stored in a separate reuse storage. This is the least
complex way of reusing code in the set of models listed in appendix D, and
it is the way I beforehand had assumed most of the companies reused code.



Chapter 7

Evaluation

In this chapter, I will evaluate the research process (section 7.1) and the
process of extracting information from the notes I wrote during the inter-
views (section 7.2).

7.1 Research Process

As this research has been performed to form a basis for my Master’s thesis
and thus mainly for my own sake, I probably haven’t been as diligent in
ensuring the quality of the research process as I might otherwise have been.

7.1.1 Time, or Lack of It

An important aspect for all research is time. A few times during the planning
and implementation of the research process, I was too optimistic when esti-
mating the time needed to complete a task. Each time I had mis-estimated,
the task at hand included contact with the interviewees or other people (e.g.
switchboard operators). There were mainly two occasions where I under-
estimated the time need. One occasion was when I tried to get participants
for the research; explaining the reason for my call and getting in touch with
the right person took more time than I had thought. The other occasion
was when I needed the interviewees to verify the interview transcriptions;
some answered very quickly, while some used more time before returning an
answer. There was also one occasion where I made a good time estimate: I
scheduled the interviews one hour apart. Few of the interviews lasted that
long, and I could spend the extra time left before the next interview making
additional notes or preparing for the next interview.

31



CHAPTER 7. EVALUATION 32

7.1.2 Sample Selection

When I was trying to get participants for the research, I started with a list
of 53 companies. This was reduced to a list of 25 companies where someone
had agreed to participate. The most often cited reason for not participating
was a lack of time. I had expected a higher rate of participation, although
I was aware that time is a valuable resource in software development. The
process of getting participants for the research was time consuming, and
most of the time was spent (unsuccessfully) trying to reach the right person
at the right time.

The list of 25 participants was reduced to 24, as one of the interviews could
not be conducted. This was because I was unable to reach the interviewee
over the telephone at the scheduled time and date, over the telephone at
subsequent times and dates, and via e-mail. I don’t know why this happened.
In spite of several messages left at his answering machine and messages given
to the switchboard operator, and one e-mail message, I have not yet received
any response from the person in question.

7.1.3 Selecting the Right Research Method

When I planned the research, I wanted to conduct a survey. As I was
planning the survey I contacted several software developing companies in
Norway, and I tried to convince them to participate in the survey and set a
date and time for a telephone call. One of the people I spoke to explained
to me that he didn’t have the time for an appointment later, but he had
the time to participate at the time I contacted him. In a way, he helped
me test the unfinished questionnaire I had created. The conversation made
me realize that I had to re-think the way I communicated with the partici-
pants. One of the most important reasons for this realization was that the
interviewee’s company didn’t have tools specifically developed for code reuse
or formalized procedures for code reuse, although the developers considered
reuse to be highly important.

My reason for choosing to perform a survey and develop a questionnaire
was an assumption that reuse was performed in organized ways, with tools
and procedures which are developed for code reuse. This assumption was
based on the fact that reuse is not a new concept, and I believed that reuse
was so common and important that many companies/development depart-
ments would have carefully considered the way reuse was performed. If
reuse was performed in an organized, formalized manner, a questionnaire
would be a good way of capturing information regarding code reuse. How-
ever, the conversation with the first participant made me realize that reuse
was not commonly as organized as I had believed. Hence, I decided to use



CHAPTER 7. EVALUATION 33

an interview guide instead of a questionnaire. This enabled a more open
conversation than the previously formulated questions of the questionnaire.

7.2 Extracting Information From Interview Notes

One of the things which is often more difficult in qualitative research than in
quantitative research, is extracting information. I had written notes during
the interviews, and I had to extract information from these notes to better
be able to present and discuss the results. I chose to extract a minimum
of information, as this would enable a more surveyable summary of the
results. I could have included more information in the summary, such as
which programming languages were used, and a classification of how domain
specific the software development of the companies were, but I felt this
would make the summary less surveyable and not contribute much to the
understanding of how reuse is performed. The reasoning behind the selection
of categories for extent of code reuse and effects of code reuse is similar; I
have extracted information at a level which allows a general understanding.



Chapter 8

Conclusion and Further

Work

As the final part of the report, I include the conclusion (section 8.1) and
some suggestions for further work (section 8.2).

8.1 Conclusion

After performing the research, I feel that the process has been informative
and I have reached the goals I had when I started working on the project
(listed in section 1.3). My knowledge is of course specific to the group of
companies and people I interviewed.

Code reuse is very common, but not commonly achieved by using tools
and/or procedures especially developed for reuse. There are many reasons
why software developers choose to reuse code; the most common reason is
increased efficiency. Improved quality and stability, simplified testing, and
uniformity are also reasons which are mentioned by many developers. All
the interviewees feel that these reasons for code reuse are actually achieved
effects as well.

This work has left me with a lot of questions and ideas for further work,
which is the topic of the following section.

8.2 Further Work

During the course of this project a lot of new questions have appeared,
which have given several ideas for further work (for example for my Master’s

34



CHAPTER 8. CONCLUSION AND FURTHER WORK 35

thesis):

• Do research on available tools and/or procedures specialized for code
reuse (e.g. low-cost or free tools/procedures), and perhaps find out
how the interviewees from this study would feel about using such tools.

• Use focus groups consisting of interviewees in this project as a means
of gaining a deeper understanding of the results of this research.

• Look at patterns in relation to code reuse; e.g.: Are patterns more
common than code reuse? Are the use ofs patterns perceived as simpler
than code reuse?

• Take a closer look at the two companies which recently had started
using new tools/procedures (Lydia, Fundator); how are things different
after the change?

• Develop a system for code reuse, perhaps specialized for small to
medium sized enterprises.

• Few people seem to be conscious of all the possible effects of code
reuse. Contact the same interviewees and present them with a list of
effects, and ask them to rate the effects on two scales; to what extent
is the effect desired, and to what extent is the effect achieved.



Appendix A

E-mail Information

This appendix contains the information I e-mailed to the companies who
wished information on the project. As I was loosely considering using focus
groups at the time, I included information on this in the e-mails. All the
e-mails I sent were in Norwegian (section A.1), but I include an English
version in section A.2.

The contents of the e-mails varied slightly. As I realized that the time spent
on each interview would be shorter, I reduced the time estimate to “about
30 minutes”. Also, not all information was necessary to include in every
e-mail, as I already had made arrangements with some of the companies
when the e-mail was sent.

A.1 Norwegian

Hei.

Jeg heter Lisa Wold Eriksen og studerer datateknikk p̊a NTNU (Norges
Teknisk- Naturvitenskapelige Universitet) i Trondheim. Jeg utfører et pros-
jekt som del av studiene til Master of Science (Sivilingeniør). Dette pros-
jektet handler om gjenbruk av kode. I den forbindelse kontakter jeg deres
bedrift i h̊ap om at dere kan bidra med informasjon til mitt prosjekt.

Prosjektbeskrivelsen lyder som følger:
Gjenbruk av kode i objektorientert programvareutvikling.
“Fornuftig gjenbruk av kode øker hastigheten i utviklingsprosjekter.”
(Rickard Öberg) I s̊a måte er verktøy og metoder for gjenbruk av kode og
erfaringer med dette viktig. Prosjektet g̊ar ut p̊a å undersøke og vurdere
dagens løsninger n̊ar det gjelder gjenbruk av objektorientert kode.

36



APPENDIX A. E-MAIL INFORMATION 37

Denne beskrivelsen finnes ogs̊a p̊a http://www.idi.ntnu.no/undervisning/-
prosjektbeskrivelse.php?id=389. Min veileder heter Tor St̊alhane og er pro-
fessor ved IDI (institutt for datateknikk og informasjonsvitenskap).

Hoveddelen av prosjektet vil basere seg p̊a telefonintervju med representan-
ter for ulike IT-bedrifter som utvikler programvare i Norge, og det er som
nevnt derfor jeg kontakter deres bedrift. Telefonintervjuet vil ta mellom
30 og 60 minutt. Jeg ønsker å vite hvorvidt gjenbruk av kode eksisterer i
bedriften, hva slags verktøy og/eller metoder som brukes for å gjenbruke
kode og hvilke erfaringer bedriften har med dette. Den innsamlede infor-
masjonen vil bearbeides og anonymiseres før den brukes i prosjektrapporten.

I tillegg ønsker jeg å ha nærmere kontakt med 5–6 bedrifter i Oslo og Trond-
heim for å f̊a en dypere forst̊aelse av deres erfaringer og forh̊apentligvis ogs̊a
f̊a anledning til å ha et personlig møte med ansatte i disse bedriftene.

I første omgang ønsker jeg fra deres bedrift å vite om det er aktuelt å bidra
med informasjon. En betingelse for at informasjonen fra bedriften skal være
interessant i prosjektet er at det brukes et objektorientert spr̊ak(*) i utviklin-
gen av programvare. Dersom det er aktuelt for deres bedrift å bidra med
informasjon ville jeg sette pris p̊a å f̊a oppgitt navn, e-postadresse og tele-
fonnummer til en kontaktperson.

P̊a forh̊and takk!

Med vennlig hilsen
Lisa Wold Eriksen
E-post: lisaer@stud.ntnu.no
Telefon: 73939242
Mobiltelefon: 97070382

* Eksempler p̊a objektorienterte spr̊ak er Java, C++, C#, Smalltalk etc.
For en liste, se http://en.wikipedia.org/wiki/Object-oriented programming-
language

A.2 English

Hello.

My name is Lisa Wold Eriksen and I study computer science at NTNU
(Norges Teknisk- Naturvitenskapelige Universitet, Norwegian University of
Science and Technology) in Trondheim. I am carrying out a project as a part
of my studies to become a Master of Science (Sivilingeniør). This project
concerns reuse of code. To this end I am contacting your company in the
hope that you will be able to contribute with information for my project.



APPENDIX A. E-MAIL INFORMATION 38

The project description is as follows:
Reuse of code in object oriented software development.
“Proper reuse of code increases the speed of software development projects.”
(Rickard Öberg) In this respect, tools and procedures for code reuse and
experiences with reuse are important. The project is about examining and
assessing the present solutions for reuse of object oriented code.

This description can be found at http://www.idi.ntnu.no/undervisning/-
prosjektbeskrivelse.php?id=389. My supervisor’s name is Tor St̊alhane and
he is a professor at IDI (Department of Computer and Information Science).

The main part of the project will be based on telephone interviews with rep-
resentatives from different IT companies which develop software in Norway,
and this is as previously mentioned why I am contacting your company. The
telephone interview will last from 30 to 60 minutes. I wish to know whether
reuse of code exists in the company, what kind of tools and/or procedures
are used to reuse code and what experiences the company has with this.
The gathered information will be edited and anonymized before it is used
in the project report.

In addition I wish to get more in touch with 5–6 companies in Oslo and
Trondheim to achieve a deeper understanding of their experiences and hope-
fully also get the chance to have a personal meeting with employees of these
companies.

To start with I wish to know if it is possible for your company to contribute
with information. A condition to make the information from the company
interesting for the project is that an object oriented language(*) is used in
software development. If your company can contribute with information I
would appreciate it if I could be given the name, e-mail address and phone
number of a contact.

Thank you in advance!

Sincerely,
Lisa Wold Eriksen
E-mail: lisaer@stud.ntnu.no
Phone: 73939242
Mobile phone: 97070382

* Examples of object oriented languages are Java, C++, C#, Smalltalk etc.
For a list, see http://en.wikipedia.org/wiki/Object-oriented programming -
language



Appendix B

Unfinished Questionnaire

This appendix contains my first draft for a survey questionnaire. The origi-
nal version is in Norwegian and is included in section B.1, while an English
translation is included in section B.2.

B.1 Norwegian

• Hvilke programmeringsspr̊ak bruker dere?

• Gjenbruker dere kode?

Dersom dere gjenbruker kode:

• Bruker dere noen spesielle verktøy for gjenbruk?

• Dersom dere bruker verktøy:

– Kommer disse verktøyene med noen slags metode for gjenbruk?
(G̊a til metode-punkt)

– Hva slags verktøy bruker dere:

∗ Navn

∗ Prodsert internt:

· Er det til salgs? Hvis ja: Lisens, pris?

∗ Produsert av tredjepart:

· Produsent

· Pris

· Lisens

39



APPENDIX B. UNFINISHED QUESTIONNAIRE 40

• Bruker dere noen spesielle metoder for gjenbruk?

• Dersom dere bruker metoder:

– Hva slags metode(r) bruker dere:

∗ Utviklet internt i selskapet

∗ Utviklet av tredjepart - hvis ja: Pris?

• Hva er de ønskede effektene av gjenbruk? (Presentér liste)

• Hva er de opplevde effektene av gjenbruk? (Presentér liste)

• Hvor omfattende er gjenbruket?

– P̊alagt eller frivillig

– Personlig eller felles

– Enkelte utviklere, hele utviklingsavdelingen eller enkelte prosjekt

B.2 English

• What programming languages do you use?

• Do you reuse code?

If you reuse code:

• Do you use any specific tools for reuse?

• If you use tools:

– Do these tools come with some kind of procedure for reuse? (Go
to procedure point)

– What kind of tools do you use:

∗ Name

∗ Produced internally:

· Is it for sale? If so: License, price?

∗ Produced by third party:

· Producer

· Price

· License

• Do you use any specific procedures for reuse?



APPENDIX B. UNFINISHED QUESTIONNAIRE 41

• If you use procedures:

– What kind of method do you use:

∗ Developed internally in company

∗ Developed by third party - if so: Price?

• What are the desired effects of reuse? (Present list)

• What are the experienced effects of reuse? (Present list)

• What is the extent of reuse?

– Imposed or voluntary

– Personal or common

– Individual developer, individual projects, or development depart-
ment



Appendix C

Interview Guide

This appendix contains the interview guide I used. My interview guide was
written in Norwegian, as the interviews were conducted in Norwegian. The
original interview guide is included in section C.1. Section C.2 contains an
English translation of the Norwegian interview guide.

C.1 Norwegian

• Programmeringsspr̊ak

• Hvor omfattende gjenbruk (p̊alagt/frivillig, personlig/felles, enkelte
utviklere/hele utviklingsavdelingen/kun enkelte prosjekt)

• Ønsket og oppn̊add effekt(er)

• Verktøy?

• Metode/rutiner/prosedyrer?

• Generell beskrivelse av hvordan gjenbruk utføres i praksis

C.2 English

• Programming language

• Extent of reuse (imposed/voluntary, personal/common, individual de-
veloper/entire development department/individual projects)

• Desired and attained effect(s)

• Tools?

42



APPENDIX C. INTERVIEW GUIDE 43

• Methods/routines/procedures?

• General description of how reuse is actually carried out



Appendix D

Reuse Models

Hauge ([8]) presents four basic models on how reuse could be organized,
taken from Davenport & Probst ([9]). In this appendix I will describe each
model briefly.

D.1 Model 1 — Project Oriented

Shown in figure D.1, model 1 is the most straightforward reuse model.
A shared reuse storage is used to exchange reusable components between
projects. Each project is responsible for identifying and developing compo-
nents for this reuse storage.

Reuse 
storage 

Projects 

Figure D.1: Reuse Model 1 — Project Oriented

44



APPENDIX D. REUSE MODELS 45

D.2 Model 2 — Reuse Through a Separate Project

Model 2 (figure D.2) is similar to model 1, as the projects identify possibly
reusable components to add to a shared storage. Model 2 adds a level of
complexity: The development of the reusable components is performed by
a temporary reuse project, which then adds the components to the shared
storage. When a component is added to the reuse storage, other projects
can retrieve it from this shared storage, similarly to the previous model.

Figure D.2: Reuse Model 2 — Reuse Through Separate Project

D.3 Model 3 — Component Producer

In model 3 (figure D.3), all parts of the development of reusable components
are the responsibility of a permanent department; the component producer.
As in the two previous models, the reusable components are added to a
shared storage and thus made available to the projects.

Reuse 
storage 

Projects 

Component 
producer 

Figure D.3: Reuse Model 3 — Component Producer



APPENDIX D. REUSE MODELS 46

D.4 Model 4 — Domain Producers

The most complex reuse model is model 4 (see figure D.4). This model is
used in larger organisations who develop products within several domains.
Domain specific reusable components are produced by a component devel-
opment department for one or more domains.

Reuse 
storage 

Projects Domains  

Network

Database

Graphics

Figure D.4: Reuse Model 4 — Domain Producers



Appendix E

Interviews

In this appendix, the interviews are included. The appendix also includes
some information about the interview transcriptions, including a list of the
companies involved, in addition to the interview transcriptions themselves.

E.1 Interview Transcriptions

The following sections contains the transcribed interviews. First I present
some information on the interview, such as company name, the name of
the person I interviewed and the time I spent conducting the interview.
Then I describe the company in brief; what the company does, where it is
located, and number of employees. Finally the transcription of the interview
is presented.

The text has been edited somewhat, as the original notes made during the
interviews was highly informal (and in Norwegian). The original notes are
not included, as they would not be useful/understandable to others than the
author. If the original notes are needed for some reason, please contact the
author to obtain them.

The overall elements of the transcription are as follows: First I list the pro-
gramming language(s) used. The rest of the transcription covers the effects
of reuse, both desired and experienced effects. The way reuse is carried out
(including use of tools and/or procedures) is also described. Finally I have
included other interesting pieces of information where appropriate.

47



APPENDIX E. INTERVIEWS 48

E.1.1 List of Companies

When I made the appointments for interviews and conducted the interviews
I used a list where I assigned each company a letter from A to Y. This helped
me organize my work, and would also make it easier to make the information
about some or all of the companies anonymous. I assigned the companies
letters in the same order as I was going to conduct the interviews; the first
company I interviewed was A, the second was B, and so on. Where some
letter in the series is missing, I had an appointment for an interview but
did not get to conduct the interview. The list of companies is included in
table E.1.

ID Company Web address

A Ajour Media AS www.ajourmedia.no

B Antares Gruppen AS www.antares.no

C ErgoSolutions AS www.ergosolutions.no

D Fundator AS www.fundator.no

E TietoEnator AS www.tietoenator.no

F Fronter AS www.fronter.no

G QS Manager AS www.qsmanager.no

H Escio AS www.escio.no

I Cintra Software Engineering AS www.cintra.no

J Lydia AS www.lydia.no

K adramatch asa www.adramatch.no

L Electric Farm ASA www.electricfarm.no

N MaXware AS www.maxware.no

O Finale Systemer AS www.finale.no

P Well Diagnostics AS www.welldiagnostics.com

Q AKVAsmart ASA www.akvasmart.no

R Vega SMB AS www.vegasmb.no

S Geodata AS www.geodata.no

T Egroup ASA www.egroup.no

U ErgoEphorma AS www.ergoephorma.no

V Auticon AS www.auticon.no

W SYSteam AS www.systeam.no

X Deriga AS www.deriga.no

Y NetIT AS www.netit.no

Table E.1: Participating Companies



APPENDIX E. INTERVIEWS 49

E.2 A — Ajour Media AS

The first interview I conducted was with Morten Ellingsen at Ajour Media
AS. As mentioned in section 7.1.3, Mr. Ellingsen functioned as a test person
for my survey questionnaire and the way I conducted the interviews. This
interview took about one hour.

E.2.1 About the Company

Ajour Media AS is a small, Norwegian company located in Frei. The com-
pany develops a suite of software products for newspapers. The products are
based on the Microsoft c©.NET platform with XML and Web-interface. The
staff consists of six persons, of which two persons handle the software delvel-
opment. Ellingsen is both the founder of the company and the development
manager.

E.2.2 Transcription

Java and C# is used for developing client software and C# for server soft-
ware. Ellingsen explained that Ajour Media exercises reuse to save time
and, more importantly, to create stable software. The software becomes
more stable because the code already has been verified and debugged. He
stressed the importance of code reuse and told me that he spends more time
on quality assurance than he does on the coding, as it is imperative to have
products with as few flaws as possible.

No tools specialized for reuse are employed. Reuse is carried out by creating
and using libraries and is chiefly module based. At first, Mr. Ellingsen
explained the systems Ajour Media sells as consisting of a user part and a
server side set of C# libraries which are made as general as possible. Later
he explained that many of the software products they produce are based on
Web services. C# is used for programming the Web services, which are the
basis for Web applications. The Web applications, which he labels client
software, consist of a Java or C# front-end and C# code-behind. There is
less code reuse on the client side than in other parts of the system.

Ellingsen stated that he reuses as much as possible. He has been developing
software for 13 years and has created many libraries. Some of them have
been discarded, for example old libraries which are programmed in C and
are not in use any more. When developing software he tries to find and
collect general code which can be reused, for instance by searching through
files and adding the code to libraries. This is also used as a quality assurance
procedure; he goes through all code looking for code which has been written



APPENDIX E. INTERVIEWS 50

twice. If he finds such code he creates a new library or uses an existing
library.



APPENDIX E. INTERVIEWS 51

E.3 B — Antares Gruppen AS

The second interviewee was Mr. Jon Br̊atømyr who is a senior system
consultant at Antares Gruppen AS. The interview lasted for about a quarter
of an hour.

E.3.1 About the Company

Antares Gruppen AS is located in Oslo. The company employs approxi-
mately 30 persons, of which 17 work with software development. Antares
Gruppen offers software engineering with main focus on portal solutions for
intranet, customers and partners, handheld solutions and interactive TV
systems. The company also does consulting, mainly focused at eServices for
the public sector and eBusiness. Antares is in addition providing services
within systems development based on Java/J2EE/J2ME, C++ and Oracle
development tools and are moreover providing consulting services related to
Microsoft Windows 2000/2003 as a certified Microsoft partner.

E.3.2 Transcription

Several programming languages are used, mainly Java; J2EE. Mr. Br̊atømyr
informed me that at the present most of the software development is done in
connection with their consulting services, and for this reason re-use is mainly
up to each individual developer. He also informed me that the company in
time will be developing more software which is not client specific. As a
consequence of this, re-use will have to be more coordinated and organized.

Br̊atømyr mentioned several reasons for re-using code; it saves time, it helps
achieve a better solution, the developer knows that the code works and most
of the brainwork has already been done. He observes that these are not only
reasons for re-use, but also the effects of re-use.

Currently no specific tools or procedures for re-use are in use. The re-use
is highly disorganized, with some code placed on a CVS server and some
on network disks. There are no standard libraries. Re-use is achieved by
“cut and paste” or by using entire classes. When re-using a class, however,
oftentimes modifications to the code are needed, and so also class re-use in-
volves some level of “cut and paste”. There have been frequent unsuccessful
attempts at obtaining and using routines for re-use. Mr. Br̊atømyr believes
the lack of success is due to the fact that there is no great need for such
procedures as of yet. As mentioned earlier, this will probably change in the
future. To this end he spoke of a framework and libraries for re-use and
routines for accessing and modifying these.



APPENDIX E. INTERVIEWS 52

E.4 C — ErgoSolutions AS

At ErgoSolutions AS I interviewed Ken Dahle, who is a senior consultant.
We spoke for half an hour.

E.4.1 About the Company

ErgoSolutions is located in Oslo and develops, integrates and administers
business critical IT systems for larger businesses. The company offers ser-
vices throughout the IT project’s life cycle; from consultancy and analysis
to project management, development and efficient administration. ErgoSo-
lutions is a part of ErgoGroup which is owned by Posten Norge AS. The
company has 300 employees. 150 of these work with software development.

E.4.2 Transcription

Several object oriented programming languages are used in software devel-
opment; mainly Java, but also Delphi and C++. There is no company
policy regarding re-use, but the developers find it natural to re-use code.
On a higher level, it’s up to the architect or designer of the program to
decide which patterns should be used. The Integrated Development Envi-
ronment (IDE) used by the developers helps develop frameworks for these
design patterns.

There are several reasons for reuse on different levels. Designers are mainly
concerned with patterns, while code reuse is employed by the software devel-
opers to avoid doing the same thing twice. Mr. Dahle explicitly stated that
they do not reuse to save time on testing, as testing is important. There
is, however, a positive effect from reuse on testing: Some parts which are
reused are familiar and the developers and testers have already developed
tests for them. Hence it is not necessary to make new unit tests for that
specific part. ErgoSolutions experiences that the time saved due to reuse in
relation to the total time of developing a software product is marginal, but
measurable.

Reuse is common in software development at ErgoSolutions. The developers
start with pre-existing code and adjust it, and the structure is maintained
while the business logic is altered. Each developer decides for himself where
he wants to start and how he wishes to reuse. Commonly the developers use
components that are already known to them. Mr. Dahle explained that the
developers have generated libraries for specific functionalities. The libraries
are maintained in one location and used by several applications. They con-
tain functionality which is so specific to one area that it is not necessary or



APPENDIX E. INTERVIEWS 53

desirable that each developer or development department has deep knowl-
edge of that area. One example of such functionality is packages for Public
Key Infrastructure. Mr. Dahle explained that he feels optimal reuse is when
something is produced once and then used by others as a utility. An exam-
ple of this is, as previously mentioned, when someone with expertise in a
certain area produces a module which can be reused by other systems, e.g.
a module for certificates which was produced for one system and then used
by other systems.

Frameworks are often reused as they consist of components with function-
ality which is familiar, always needed, and which there is no need to redo.
When it comes to tools, different versions of JBuilder is used in develop-
ment projects. No tools or procedures developed especially for reuse are
employed.



APPENDIX E. INTERVIEWS 54

E.5 D — Fundator AS

Interview number four took 20 minutes. This time was spent interviewing
senior consultant Geir Domaas at Fundator AS.

E.5.1 About the Company

Fundator AS is located in Trondheim. The company has 17 employees of
which 14 are working with software development. Fundator delivers IT solu-
tions and provides consultancy services in system development and system
integration.

E.5.2 Transcription

As Fundator is a consultancy firm, the programming languages used by the
developers vary with the customers’ needs and demands. .NET, Java, and
PHP were most commonly used for software development at the time of the
interview.

At Fundator the developers reuse mainly to save time, provide the customer
with a cheaper solution, and produce a solution with higher quality. They
feel that these are both desired and achieved effects of reuse. Time is saved
during tests and by spending less time writing the code. The quality is
improved as the reused modules are commonly more thoroughly tested and
the code is improved as the developers go through it several times. Another
positive effect is that the company can provide a more accurate and possibly
lower price for a system if it is similar to something they have already
produced. Also, the experience with similar systems and the possibility
of reuse can be used in marketing the company.

The level of reuse varies with the projects. Unless the customer has demands
on reuse, the decision to reuse is entirely the developer’s own. Mr. Do-
maas mentioned that generally reuse is complicated and often isn’t applied.
Fundator is, however, in the final stages of adopting an internal quality
control system which accentuates reuse. This system was developed by
Fundator and is called “Fundator Unified Process” (FUP). FUP is based
on Rational Unified Process (RUP), which is quite extensive. Instead of
including everything from RUP, Fundator has selected the artifacts from
RUP which are the most suitable for the kind of projects carried out at the
company. Before the creation of this system, there wasn’t much structure
or a common system for reuse. Libraries existed, but to get hold of code
to reuse, the developer wishing to reuse the code had to call on the devel-
oper who had produced the code. No tools or procedures specific to reuse



APPENDIX E. INTERVIEWS 55

were employed company-wide, and reuse was achieved by reusing text (i.e.
code snippets), files (e.g. classes), file structures (e.g. packages) or entire
modules.



APPENDIX E. INTERVIEWS 56

E.6 E — TietoEnator

At TietoEnator AS I interviewed Morten Brurberg, Head of Department.
This interview took 20 minutes.

E.6.1 About the Company

TietoEnator is an international consultancy firm which provides consulting,
developing and hosting services for its customers’ digital businesses. They
employ more than 14000 people world wide, in more than 20 countries. 1100
employees are located in Norway, of which about 500 work with software
development.

E.6.2 Transcription

Most of the programming is performed in Java. Reuse is not imposed on
the developers, but it is part of the company strategy to reuse as much
as possible. As Mr. Brurberg stated: Everybody depends on reusing what
they’ve got to be able to compete both among countries and for customers.

The reasons for reuse are desired efficiency and quality; when reusing a
component the developers already know something about the qualities of
the component, such as stability, scalability and performance. The achieved
effects of reuse mostly match the desired effects, but sometimes a component
might not be as suitable for reuse as it initially seemed, resulting in lower
rather than higher efficiency.

TietoEnator has produced an internal company-wide system for code reuse,
called “Digitalizing Framework”. The company has invested substantial
amounts of resources in this system. It is rooted in the senior management
and the company has a separate organizational unit in charge of the sys-
tem. At the base of the system is a repository, while the users access the
system via a web interface. This interface allows the users to access existing
reusable components and add suggestions for new components. The com-
ponents are mainly large and solve general tasks, but the repository also
contains smaller components and classes. The repository consists of several
sections, for example one section for general company-wide components and
different sections for different countries with components which in some way
are specific to that region.

The Digitalizing Framework is a tool for reuse which also introduces some
procedures. When a developer considers a component to be reusable, he or
she commits a suggestion for review. This is done by filling out an electronic



APPENDIX E. INTERVIEWS 57

form with a description of the component. The review is performed by
someone in a central part of the organization and the review process ends
with approval or disapproval of the component as fit for reuse and possibly
authorizing investments (for example allowing the developer to spend extra
time developing the component). There are no rules concerning which of the
existing components in the Digitalizing Framework that should be reused or
which new components should be committed; this is up to the developers
working on each project.



APPENDIX E. INTERVIEWS 58

E.7 F — Fronter AS

The fifth interviewee was Are Pedersen, who works as a Development Team-
leader at Fronter AS. The interview took about a quarter of an hour.

E.7.1 About the Company

Fronter AS was founded in Norway in 1998, and is now represented by
partners in several European countries. Fronter provides Virtual Learning
environments which enable creation, management and sharing of knowledge
and help students and teachers to work together regardless of their physical
location. Fronter has 24 employees and 1 software developing department
with 6 employees.

E.7.2 Transcription

At Fronter most of the programming is done in PHP, but PHP’s object
oriented features are only partially utilized. Some Java is also used for
programming applets. The developers try to reuse whenever possible, and
Mr. Pedersen remarked that reuse is easiest when dealing with object ori-
ented code. The desired effects of reuse are a consistent manner of operation
when it comes to appearance and functionality and also reducing the num-
ber of errors. In addition to these effects, the developers experience that
reuse can save some time.

Fronter is mainly developing one single application system, which means
there are a lot of basic libraries which have to be used by everyone. Whenever
something new (an addition to the system) is produced, the developers try
to reuse as much as possible in addition to the common libraries that always
have to be used. Every time something is produced, the developers perform
a code review to ensure that the right code has been (re)used. In addition
to the reviews the developers hold meetings to plan new additions to the
system, and a part of this planning is done to discover what can be reused.
Both these procedures include reuse, but neither of them are specific to code
reuse. The developers don’t employ any procedures specific to code reuse.

No tools for reuse are utilized, the developers either “cut and paste” code
(which is generally avoided) or expand the functionality of already existing
code. The developers have, however, created a Website which functions as a
work of reference, a place where they search for information and documen-
tation when they are programming. The Website can provide information
as to whether something has been done earlier and presents a description of



APPENDIX E. INTERVIEWS 59

how it can be done, possibly with a hint to where reusable code might be
found.



APPENDIX E. INTERVIEWS 60

E.8 G — QS Manager AS

At QS Manager AS, I spoke to Tor Sætrang, who is the founder and general
manager of the company. The interview lasted for ten minutes.

E.8.1 About the Company

QS Manager AS is a Norwegian company located at Hamar. They have
3 employees, of which 2 work exclusively with software development. Due
to turbulence in the trade, the company is organized as flexible as possi-
ble, allowing 5 people in total to work with their products. The company
has a product line of products for quality assurance, documentation and
“Asset/Resource/Inventory Management”. Their products support the ad-
ministration of important resources in businesses and increase the efficiency
of the processes involved in quality assurance.

E.8.2 Transcription

The developers at QS Manager mostly use the programming language Clar-
ion, but Visual Basic and Java are also occasionally used. Mr. Sætrang
explained that the decision to reuse is natural to the developers. A good
programmer is “lazy” — the less time and energy wasted, the better. In this
way, reuse is a result of each programmer’s desire to achieve his/her goals
quickly, and it is up to each programmer to make the decision to reuse.

No tools or procedures specific to reuse is employed in software development.
As previously mentioned, the decision to reuse is left up to each program-
mer. The developers use each other’s code as well as their own, often by
“cut and paste”. The fact that the company produces primarily one appli-
cation means that all the developers have access to the source code of this
application and (re)use components either directly or by “cut and paste”.



APPENDIX E. INTERVIEWS 61

E.9 H — Escio AS

At Escio AS, I spoke to Espen Holje, who works as a Product/Development
Manager. This interview lasted circa ten minutes.

E.9.1 About the Company

Escio is a Norwegian company located in Hamar, and is an internet company
in the concern called “Sulland Gruppen”. Their main focus is on develope-
ment of webbased solutions based on their content management product
EasyPublish CMS. Although the company has a strong focus on developing
their core products, they also provide consultation and project management
services. Escio has 7 employees, including 2 who develop software.

E.9.2 Transcription

The programmers at Escio use PHP when developing their browser-based
content management platform, which is their main product. Mr. Holje in-
formed me that reuse saves time, both in terms of having to write less code
and already having used and tested the reused components.

Reuse is the basis of Escio’s business, reuse is the rule rather than the
exception. Experience indicates that the degree of reuse should be about
90-95%, mainly based on the fact that their customers have similar problems.
The developers always consider how they can produce their software as “off
the shelf” software and parameterize as much as possible to enable reuse.
In a project developing software for a small to medium size Web site, the
company can deliver a solution which is 100% “off the shelf”. In larger
projects, there is about 5–10% development of new code.

As for the remaining 5–10% code which is not “off the shelf” the developers
analyze the code to see if it has general interest for generalization. Code
that may be reused is then generalized and implemented into their content
management product by parameterizing the functionality and placing it into
an object repository. In a 3-tier model, with separated business logic, this
enables the programmers to easily reuse the components. Components which
produce output, e.g. an object displaying an article or a list of articles on a
website, extends a base class which covers data transformation services for
easy deployment on any site. All source code is under control of a versioning
system.



APPENDIX E. INTERVIEWS 62

E.10 I — Cintra Software Engineering AS

At Cintra Software Engineering AS, Tomm Scüller was the interviewee. He
is Head of Development. This interview took about ten minutes.

E.10.1 About the Company

Cintra Software Engineering AS is a two man software development firm
located in Porsgrunn. Most of the software products developed at Cintra
are produced for clients (and may be sold by clients instead of directly from
Cintra). The company also offers counselling, problem-solving, courses et
cetera.

E.10.2 Transcription

The programming languages used at Cintra are Borland Delphi and C#
.NET. The company has a policy to reuse code where appropriate. Desired
effects from reuse are saved time and higher quality. The developers feel
these are not only the desired effects, but also the real effects. Another
reason for reuse is that the company’s clients have different needs. This
means that different functionality is needed, making it easier to have sev-
eral slightly different parallel systems (reusing code) than assigning all the
functionality to one single, larger system.

At the present time inheritance is used to a certain extent, but the developers
wish to make even more use of inheritance and use a single code base. In
addition to using templates for inheritance, “cut and paste” is also used if
appropriate. Previously, component libraries in Delphi have been used with
success, but this is not as useful anymore.

No tools and procedures specifically created for code reuse are applied. The
developers keep the shared source code in a library with version control.
Generally, the two developers keep a running dialogue to ensure that they
both know what the other is doing.



APPENDIX E. INTERVIEWS 63

E.11 J — Lydia AS

Interview number ten was with project coordinator Monika Lie Larsen at
Lydia AS. The interview lasted for nearly a quarter of an hour.

E.11.1 About the Company

Lydia AS is a Norwegian company located in Trondheim. They develop and
implement software for administration, operation, maintenance and devel-
opment of buildings and property. Their software is called Lydia R©, and the
company performs development, project assignments, installation, training,
and other services connected to this software. Lydia AS has 11 employees,
of which 4 work with software development.

E.11.2 Transcription

The developers at Lydia program in C#, Tcl, and C. The company is in the
process of adopting a new system for development. Ms. Larsen depicted the
change as going from spaghetti to lasagna, i.e. a change from disorder to a
more organized system. A strategy for reuse is embedded in the organization
of the class hierarchy in relatively small groups/assemblies which reflect
business areas and layered structure in the application. Previously, reuse
has not been common, but this will change with the introduction of the new
system.

Ms. Larsen stated that it goes without saying that code has to be reused
when working with software development. The effects of reuse are saved
development time and more predictability in testing. Also, it is important
to make developing fun, and get more focus on development and less focus
on error correction.

One of the effects of introducing the new system is that a procedure for
reuse will be applied: All developers when developing software will have to
check if something similar has been created earlier. If not, they will have to
create a class themselves, include documentation in the code, and produce
a test class with standard tests for each access class.

No tools specifically produced for code reuse are employed.



APPENDIX E. INTERVIEWS 64

E.12 K — adramatch asa

At adramatch asa, I interviewed Ketil Grytten, who is a software developer.
The interview lasted for twenty minutes.

E.12.1 About the Company

adramatch is an international company which develops and distributes soft-
ware for automatic reconciliation (automatiske kontoavstemminger og au-
tomatisk oppdatering av innbetalinger uten KID). The company headquar-
ter is in Oslo, and there are subsidiaries in Stockholm, Copenhagen and
London. adramatch has a total of about 35–40 employees. 3 of these work
with software development, all of them located in Oslo.

E.12.2 Transcription

At adramatch, the developers program in C#, C++, and Visual FoxPro.
Mr. Grytten explained that as they make a niche product, the developers
want the produced components to be reusable in several programs. For this
reason, the developers use the object oriented functionality in C# to be able
to reuse components.

Effects of reuse are saved time on development and testing. When a reusable
component exists, there is usually no need or desire for further development
or changes to the component. The developers try to keep further develop-
ment to a minimum, as this will ensure that the reusable components in the
long run will become highly stable.

Mr. Grytten stated that the developers reuse to the best of their abilities.
No procedures or tools created specifically for code reuse are employed,
but generally the developers make the components they produce as general
as possible to avoid changing them at a later time, and a pattern called
Abstract Factory is employed to create flexible software products.



APPENDIX E. INTERVIEWS 65

E.13 L — Electric Farm ASA

Interview number twelve was with Tor Haugen, a senior developer at Electric
Farm ASA. The interview took about 35 minutes.

E.13.1 About the Company

Electric Farm ASA is located in Oslo, and is a part of ErgoGroup which is
owned by Posten Norge AS. Electric Farm is a consultancy firm specializing
in development of Web-based services and solutions. The primary products
of the company are Web solutions for interaction with and administration
of larger databases, electronic commerce, finance and stock services, project
management, and content management systems. The company has 23 em-
ployees, of which 19 are software developers.

E.13.2 Transcription

The programming language used at Electric Farm is C#. The company
has a relatively general policy on reuse; the developers should try to reuse
code. Beyond that, deciding how to reuse and what to reuse is left to the
development department and the individual developers.

Previously, reuse was not common; mainly a few developers with an initia-
tive advocated code reuse. These developers have collected general code in
the form of reusable components in a joint framework project. As this base of
reusable components has evolved, the desire to reuse has spread throughout
the development department, and at the present time, the reusable compo-
nents are utilized in the company’s .NET projects. The transition from ASP
and Visual Basic previously used to C# and .NET technology was a con-
tributing factor to the growing success of the base of reusable components,
as it has made reuse easier. It was only when the developers started using
object orientation that any significant level of reuse was reached.

The reusable components in the framework project are open for anyone to
develop further, and everything is subject to version control. There is also
a folder of already compiled components and help files/API documentation
to be used when no changes to the source code are necessary. No tools
specifically created for reuse are employed, primarily due to the lack of
central initiative. Because of this lack of initiative, reuse has been introduced
gradually, at first in individual projects and later in the common framework
project, and time has not been invested in researching and selecting a tool
for reuse.



APPENDIX E. INTERVIEWS 66

There are no established procedures specifically for reuse. The developers
have a rudimentary code standard (naming conventions, basic patterns, et
cetera) which is partially verbal and partially in writing. The code stan-
dard is based on a common understanding of how things are organized in
namespaces (file structures and ways of organizing code in functional areas)
and what kind of patterns should be used to solve individual problems. Be-
fore anything is added to the reuse framework, it has to go through peer
reviews by several developers and consensus has to be reached that the code
follows the code standard and is reusable.

There are several viewpoints on the desired effects of reuse. The manage-
ment focuses mainly on shortening the development time in order to deliver
the products faster and/or improve profits. The reuse of components means
that the company has modules for and experience with tasks and function-
alities. This is an advantage for the developers saving time and the man-
agement saving money, but is also seen as an advantage from a marketing
point of view.

Mr. Haugen has realized that there is another aspect of reuse which is just
as, or even more, important: Reuse results in components of higher quality.
Some errors are always made when the components are developed, but as the
components are reused, these errors are fixed, and the result is more stable
components. This also means that time can be saved during tests: Often
development and preliminary testing of components happen simultaneously
as the developers produce the components, and this preliminary testing is
not necessary for the reused components.

Reusable components can also improve the process of starting a new project.
When the members of the development team meet to start a project, they
have to get an idea of what is to be done. Sometimes the developers may
feel “lost” and it may seem like they have to start from scratch. In this
situation, it is useful to have reusable components from a previous project
which resembles the new project. This makes things easier for the developers
by reducing the need for discussions and clarifications of how functionality
is to be implemented et cetera, as some parts already are implemented. The
resemblance to the older project and reusing code from that project help
make the new project more “recognizable” as well, and in this way, reuse
helps create continuity between projects.



APPENDIX E. INTERVIEWS 67

E.14 N — MaXware AS

At MaXware AS I spoke with CTO Tor Even Dahl. The interview took
nearly 20 minutes.

E.14.1 About the Company

MaXware is an international company, delivering vendor neutral Identity
Management solutions utilizing the customers’ existing infrastructure. The
company’s targeted markets are telecommunications, military/defense, gov-
ernment, postal, oil & gas, and finance & insurance. The company has 33
employees, of which about 10 work with software development. All of the
software developers are located at the headquarter in Trondheim, Norway.

E.14.2 Transcription

The developers at MaXware primarily use Java, but also Visual Basic, C,
C++ and PHP when producing software. As they develop software for
different markets, there isn’t extensive reuse of components. Hovewer, they
try to reuse third party open source software where appropriate. No internal
library of reusable components exists, and when code actually is reused it is
done by “cut and paste”, as they reuse small parts of code more often than
entire classes or components. The developers know each other well and
they have good communication internally in the development department
regarding what each developer is working on. This is one of the reasons why
they feel it is not necessary to create a library of reusable components which
they have produced themselves.

Mr. Dahl reported that the effects (both desired and achieved) of code reuse
are saved time and money, and optimization of the code. To the developers
at MaXware, speed is important; everything has to be done rapidly. The
developers try to reuse both competence and code, and it is common to
reuse the program logic instead of the program code itself.

There are no tools employed which are specific to code reuse. The developers
feel their department is so small that they don’t need a specialized tool, and
that such a tool would be expensive and not very useful to them. There
aren’t any reuse procedures either; it is up to the individual developer to
reach his/her goals as quickly as possible, based on what has been produced
earlier. There are, however, directions as to how general development should
be done, and during the development, the developers meet to discuss how
problems should be solved.



APPENDIX E. INTERVIEWS 68

E.15 O — Finale Systemer AS

At Finale Systemer AS I interviewed Head of Development Frank Mikalsen.
The interview lasted for a quarter of an hour.

E.15.1 About the Company

Finale Systemer AS is a Norwegian company with headquarters in Tromsø
and subdivisions in Oslo, Årviksand, and Skjervøy. Finale Systemer pro-
duces software for account reporting and for tasks in connection with tax
calculations. Their software products are independent applications which
consist of modules. These modules offer functionality through interfaces,
and a module can be used in several applications. Examples of applications
are FINALE Årsoppgjør (annual settlement), FINALE Skatt (tax), FINALE
Konsern (concern), and FINALE Investor. The company has 14 employees,
of which 8 work with software development.

E.15.2 Transcription

At Finale Systemer, the developers use Borland Delphi and C++ when
producing software. The software has a modular component based structure.
There are two levels of reuse; an application core which is accessed via an
interface, and a code repository where the reusable code is separated from
non-reusable code. The development department has started a project to
document code (functions, what is available) which has been reused up to
this point.

It is up to the individual developers to reuse as much as possible. The
effects of reuse are fewer (re)written lines of code and higher quality of the
code — both new and reused code. Mr. Mikalsen stated that while there
haven’t been any measurements of this, he feels that over time, reuse results
in higher quality.

No tools or procedures which are specialized for code reuse are employed. It
is left to each developer to assess whether the code or component in question
is of interest to the rest of the application field. The components which are
easiest to recognize as reusable (or not) are components or functions which
belong in the architecture; it’s easily spotted whether the component is
usable in other applications.

Using Extreme Programming (XP) and working in pairs help spread knowl-
edge of what code already exists. When the developers reuse code, it is very



APPENDIX E. INTERVIEWS 69

rarely done by “cut and paste”. Mostly, the developer uses a previously
produced component which is made available through an interface.



APPENDIX E. INTERVIEWS 70

E.16 P — Well Diagnostics AS

Interview fifteen was conducted with Senior System Developer H̊arek Ryeng
at Well Diagnostics AS. This interview lasted for a quarter of an hour.

E.16.1 About the Company

Well Diagnostics AS is a Norwegian company, located in Tromsø. They
develop, market, and sell solutions which enable secure exchange of sensi-
tive patient information. Their main product is Well Communicator. The
company has 10 employees, and 5 of these are software developers.

E.16.2 Transcription

The developers at Well Diagnostics primarily use Object Pascal, but they
also use Java, C++ and C# when developing software. The prevailing
approach to reuse is to reuse to one’s best abilities. Mr. Ryeng stated that
software developers are “lazy”; all programmers using object orientation
wish to be successful, and they thus produce code which is reusable.

An effect of reuse is saved time, which is partially due to the ability to
use automated tests; if changes are made to the reusable piece of code,
automated tests can be used to check if the altered code performs as required.
Time and effort are also saved when the developers don’t have to rewrite
the code several times. Another effect of reuse is higher quality of the end
product. All the aforementioned effects are both desired and achieved.

Mr. Ryeng explained that there are some problems connected to reuse as
well. A problem the developers might have, is that it often takes more
time to produce reusable code which is general and of high quality than
non-reusable code. When, in addition to this, there is little time, the result
might be that the code is not made reusable. Often it is difficult to reuse
code across several products. One aspect of this is changes; if there is one
component which is being reused across several products and the component
is changed, this affects all the products. This could be a good thing if it is
desirable to have the same functionality in all the products, but it turns into
a problem when the developers wish to change the component in only one
of the several products using it. He also feels that it is often merely parts
of a reusable component which are actually reused.

No tools specifically made for reuse are used. The developers have proce-
dures for testing the code: The code has to be subjected to tests which
are both detailed unit testing at class level and tests of functionality, and



APPENDIX E. INTERVIEWS 71

the tests are to be executed once every 24 hours. The developers have a
library of code which they have produced themselves, but they also reuse
code produced by a third party. The library consists of both binary and
textual content (compiled code and source code).



APPENDIX E. INTERVIEWS 72

E.17 Q — AKVAsmart ASA

At AKVAsmart ASA I interviewed program developer Allan John Alfheim.
The interview lasted for about 20 minutes.

E.17.1 About the Company

AKVAsmart ASA is a technology company with activities in the fish farm-
ing industry. The company’s two areas are “Farm Process Technology” and
“IT & Consulting”. The main products delivered by the company are feed-
ing technology and production management systems. The head office of
AKVAsmart is located in Bryne, Norway. ”IT & Consulting” is managed
from Trondheim. The company has established subsidiaries in all major
markets outside Norway; Chile, Scotland, and Canada. The company has
100 employees, of which 12 are software developers.

E.17.2 Transcription

The software developers at AKVAsmart primarily use C# (.NET) and Del-
phi when they produce software. Mr. Alfheim explained that each developer
has a free hand when it comes to reuse, but they have tried to reuse as much
as possible and to produce general code.

The desired and achieved positive effects of reuse are the same. According
to Mr. Alfheim, the most important effect is the prevention of errors; fewer
errors are made when code for common functionality is collected in a single
place. The developers also save time, as they don’t have to write the same
code more than once. Another effect is more readable code.

Some general problems with reuse were also mentioned. First, it might be
difficult for new developers to know what exists of reusable code. Second,
reuse requires more planning than developing from scratch. Also, if time is
short, reuse gets less focus.

They use no specific tools or procedures to reuse code. All code is orga-
nized in a source control program. Mr. Alfheim explained that in the big
picture, the developers try to make the design as good as possible to enable
procedures/methods to be reused. On a more detailed level, each devel-
oper decides how he/she wishes to reuse code. Both while writing code the
first time and afterward, the developers try to make the code as reusable as
possible.

When the developers are writing code, they might discover that code with
the same functionality exists someplace else. They then do something called



APPENDIX E. INTERVIEWS 73

refactoring; extract the given code from both places and add it to a separate
routine which is called from both the previous places in the code. Reuse is
done with entire classes as well as methods/procedures.



APPENDIX E. INTERVIEWS 74

E.18 R — Vega SMB AS

For the seventeenth interview I spoke with Marius Seglsten, who is a Lead
Developer at Vega SMB AS. The interview lasted a quarter of an hour.

E.18.1 About the Company

Vega SMB AS is located at Lysaker, and produces a software product which
is designed to improve the buyer’s customer interactions. The company has
9 employees, of which 4 work with software development.

E.18.2 Transcription

The developers at Vega SMB perform software development using C# .NET.
Some programming is also done in Delphi and Visual Basic, but this is mostly
maintenance of previously produced software. The desired effects of reuse
are that the developers don’t have to do the same work more than once, and
increased quality of the software. Mr. Seglsten explained that traditionally,
the developers have not reused much code. They try to develop code which
can be (re)used by others, but this turns out to be difficult in practice.

The company has recently gone through some changes, which have also
affected the developers’ ability and will to reuse source code. Previously, it
was common to reuse third party (compiled) components. This turned out
to not work so well, as many of the components were too general to be useful.
At the present time, however, the developers try to reuse their own code.
They extract code which can be made generic into reusable components, e.g.
entire functional areas which can be used in more than one application. The
reuse of components is still binary based (compiled code). When it comes
to reuse of source code, mostly small chunks of code are reused. This is
generally accomplished by “cut and paste”.

There are no tools or procedures specifically made for reuse which are em-
ployed. The developers communicate a lot, informing each other of what
they are working on, which makes the others aware of things that can be
reused. Also, when a developer is curious as to whether something has al-
ready been produced and can be reused, he/she obtains this information
simply by asking the other developers.



APPENDIX E. INTERVIEWS 75

E.19 S — Geodata AS

At Geodata AS I interviewed Technical Manager H̊avard Tobiassen. The
interview lasted for 20 minutes.

E.19.1 About the Company

Geodata AS is a Norwegian company, with its headquarter in Oslo and a de-
partment in Hønefoss. The company is a supplier of Geographical Informa-
tion Systems (GIS), and supplies IT-systems and services for administration
and use of geographical information. Geodata has 80 employees, of which
22 work with software development. Including project managers, testers et
cetera, 35 people are involved in developing software solutions.

E.19.2 Transcription

The developers at Geodata use Visual Basic .NET and Java. About one
third of the developers use Java, while the rest use Visual Basic .NET. The
level of reuse differs a bit between the two developer groups and between
projects; the Java group has a slightly better track record of reuse. Each
group has one person in charge. This person shall take the initiative to guide
the developers in the direction of reuse, on an administrative level.

There are several desired effects of reuse. Improved efficiency when it comes
to time and getting a better economy in the projects is important. The
quality is improved, and the competence and uniformity of the developers’
ways of doing things are improved; reuse ensures that even new developers
do things the same way as the experienced ones. At the present time, the
desired effects are the same as the achieved effects, but this was not always
the case. There have been phases where the developers have felt that they’ve
spent a great deal of time on reuse without getting the results. It takes some
work before the critical mass of reusable code needed to see the positive
results of reuse is reached.

The Web and Java developers have a common code library where compo-
nents from projects are stored. The Visual Basic .NET group hasn’t got a
library which is quite as extensive, but they are in the process of creating
a framework and code library for reuse. All source code is stored in a ver-
sion control system, where the reusable libraries are separated from the rest.
No tools specialized for reuse are employed. The developers don’t use any
reuse specific procedures in addition to the normal code and documentation
standards.



APPENDIX E. INTERVIEWS 76

E.20 T — Egroup ASA

At Egroup ASA, I interviewed Torbjørn Pedersen, Manager Software Devel-
opment. The interview lasted about a quarter of an hour.

E.20.1 About the Company

Egroup ASA is a Norwegian company with 200 employees who are distrib-
uted amongst offices in i Oslo, Brumunddal, Fredrikstad, Sandefjord, and
Porsgrunn. The company is a consultancy firm which delivers solutions, ser-
vices and products for cost effective establishment, operation and manage-
ment of information and communication technology solutions. Egroup has a
dedicated software development department responsible for the company’s
own Corporate Portal Solution, named eWay. There are five employees in
this department.

E.20.2 Transcription

The developers at Egroup primarily program in Visual Basic, and some C#
.NET. Mr. Pedersen reported that there is a high degree of reuse amongst
the developers, and proceeded to explain that the developers produce li-
brary routines which are general enough to be reusable, and which are often
gathered in libraries. The units of reuse are typically classes (libraries).

The desired effects of code reuse are efficiency and increased quality; extra
work and time spent to develop good solutions result in a higher develop-
ment efficiency later. Other positive effects of reuse are that the developers
don’t have to write the code over again, and they know that the code works.
Reuse also reduces maintenance, as the components become stable over time.
Mr. Pedersen stated that the developers achieve these effects of reuse. An-
other positive effect, he mentioned, is that the developers can specialize in
different fields; every developer doesn’t need to know everything about how
to solve a task when a component to handle the task already exists.

Reusable code is not separated from other code, all code is stored as libraries
in a version control system. No reuse specific tools are employed. When it
comes to procedures for reuse, Mr. Pedersen explained that the developers
don’t use any distinct procedures for reuse, but some procedures are worked
into the programming languages and tools they use.



APPENDIX E. INTERVIEWS 77

E.21 U — ErgoEphorma AS

The twentieth interview was conducted with Advisor Thomas Lünell at Er-
goEphorma AS. The interview lasted about three quarters of an hour.

E.21.1 About the Company

ErgoEphorma AS is a part of ErgoGroup which is owned by Posten Norge
AS. The company offers solutions to simplify electronic cooperation in and
between administration, local authority (kommuner), industry and inhab-
itants. These solutions cover communication, administration and message
relay. ErgoEphorma also offers analysis, consultation, and help with cus-
tomers’ databases. The company has about 200 employees, of which 20 are
software developers.

E.21.2 Transcription

The developers at ErgoEphorma use several programming languages. Mr.
Lünell uses Java and Perl, while others might prefer C or .NET languages.
There is no company policy on reuse, but reuse is generally accepted as
having positive effects on software development. More and more of the
reused code is developed by a third party, as the developers try to find
existing solutions instead of developing their own. As Mr. Lünell put it, “we
don’t try to re-invent things”. Often things have to be done in a certain
standardized way, which means there is no point in doing these things over
and over. Patterns might be used to force somewhat better code reuse, e.g.
J2EE-patterns. The developers have tried to use patterns, e.g. decoupling
of layers, and this results in better components which are easier to reuse.

The threshold to understanding components which are reused might be a
bit high, meaning the developer has to spend some time before he/she un-
derstands the component/code. This is, however, countered by the fact
that the developer saves the time he/she would have spent writing the code
him-/herself. When everything is added up, reuse saves time.

The most important effect of reuse is improved stability, as stability is highly
important to ErgoEphorma’s systems — “100%” uptime is desirable. Effi-
ciency also matters, but not as much as stability. Improved quality is impor-
tant, and related to stability. These positive effects of reuse are achieved by
the developers. But the positive effects are not the only reasons for reuse:
It’s possible to reach a phase in a project which is so large that the devel-
opers have to reuse code. The reused code doesn’t necessarily have to be



APPENDIX E. INTERVIEWS 78

object oriented (Mr. Lünell mentioned COBOL as an example), as long as
the logic fits. Reuse is then done by migration or porting.

A negative effect of reuse is possible loss of competence. How something
works is easily forgotten, and as components are reused over and over, the
developers might forget the reasoning behind the component (how does it
work, why is a functionality implemented in a certain way, etc.). In this
case, documentation is essential. It might also be an advantage to sometimes
rewrite code in order to maintain a certain level of knowledge.

Reuse is often done by copying; developer A can ask developer B to send
him/her a zip file containing reusable components, and sometimes a module
is good enough to be reused in the system developer A is making with only
minor changes. Mr. Lünell mentioned command patterns as a good way of
reusing; whatever is common to different classes should be taken care of by
a superior class, from which the other classes inherit.

The developers have toolboxes consisting of components, e.g. components
which are repeatedly used by several other components. Often simple inter-
faces are created, a framework is established, and code is cut, pasted, and
modified. Tools/utilities are often placed in separate directories (util). This
is done within each project, but seldom between projects, because nobody
trusts the other developer(s) to have done a good enough job making the
utilities. This somewhat defensive attitude is due to the fact that each de-
veloper stands responsible for the code he writes and reuses, and so each
developer is careful when reusing other people’s code.

No reuse specific procedures are employed. Mr. Lünell doesn’t have faith
in one standard set of procedures, as the situation changes from project
to project. No reuse specific tools are used. Mr. Lünell explained that he
doesn’t believe that such tools work in practice, as the developers often
make things too special to be reused. However, if a developer has produced
general components, they should be included in a JAR file which then might
be included in other applications. One might create a database system
around this, but Mr. Lünell feels that it is just as well to simply use Javadoc
instead. Documentation is an important issue, and it counts for much to
have one overview. Mr. Lünell mentioned that he expects that there is too
little communication in large companies, which makes it more difficult to
keep an overview.

It is important to remember to remove code as well, not only reusing it.
People are afraid to throw code away, but often it isn’t necessary to include
absolutely everything. On the other hand, if the code has been running for
a long time, it is stable, and changing the code might make the code less
stable. Including only the useful parts vs. maintaining stability is a tradeoff
point.



APPENDIX E. INTERVIEWS 79

E.22 V — Auticon AS

At Auticon AS the interviewee was System architect (Sticos økonomi) Frode
Nilsen. This interview lasted for 20 minutes.

E.22.1 About the Company

Auticon AS is a Norwegian company located in Trondheim. The company
offers products for and competence in accounting and wages. Their main
product is Sticos oppslag (“book of reference”), but they also develop and
sell products for accounting, annual settlement, presentation of results and
updates on e.g. changes in the laws governing taxes and wages. Auticon has
37 employees, including 5 software developers.

E.22.2 Transcription

Which programming languages are used varies, but the developers use C++
and Delphi as the main development languages. The developers should
reuse whenever possible, but there are no particular policies regarding how
reuse should be done. Mr. Nilsen explained that the developers have many
libraries which are bought from third parties, as it’s better to reuse already
existing code than creating reusable code yourself. When the developers do
create reusable code, they extract the functionality which is generally useful
for the company products.

The desired effects of reuse are saved time, and uniformity. Uniformity
greatly simplifies testing. The developers achieve these effects, but there
are also downsides to reuse. Especially when libraries are bought, there is
a lot of extra code; code which is not useful. This means that when an
error is detected, there is a massive amount of code to search through to
find the error. In this way, it’s simpler to produce reusable code yourself, as
this can be more minimalistic. A second problem with third party reusable
code is that not every supplier is good at responding to error reports et
cetera. They thereby create extra work when they release new versions of
their libraries, without Auticon’s fixes. Also, updates from the suppliers
might cause problems if the updated component isn’t backward compatible.

Reusable components often start out as single files in a project, before they
are gathered in a library (both internally in the project and externally to a
reuse project). No tools which are specifically made for reuse are employed.
“Projects” are started for reusable components of several types. For exam-
ple, there is a project for database functionality, a project for user interfaces



APPENDIX E. INTERVIEWS 80

and some projects for specific products. These projects are stored on a
common server with a version control system.

No specific procedures are employed in connection with code reuse, apart
from the routine of going through third party components to see what has
to be added to achieve the desired functionality.

Reuse is often performed at class level, but the reusable code is collected in
libraries and categorized. The developers also produce pure functions, code
which is not part of a class, e.g. conversion functions. One way of reusing
code is to link only parts of the code in a class (e.g. a method and class
variables). How reuse is performed varies. For some products the developers
use static linking with their own and the third parties’ libraries, thereby
creating an minimal application file where only the used methods and class
variables are linked in. For other products, they use dynamic linking to
their complete library set. This creates a somewhat larger distribution, but
has advantages when updates or bug fixes are released, as only the changed
components have to be distributed.



APPENDIX E. INTERVIEWS 81

E.23 W — SYSteam AS

The interview with Nicolay Lae, responsible for developent of Spektra (Ut-
viklingsansvarlig Spektra) at SYSteam AS, lasted for nearly 20 minutes.

E.23.1 About the Company

SYSteam is an international company with divisions in Sweden, Norway,
Denmark and Finland. In Norway, SYSteam has about 60 employees in Oslo,
Stavanger and Askim. There are about 25 developers located in Norway.
SYSteam is an IT partner for small and medium size companies, and they
are specialists in Enterprise Resource Planning/Supply Chain Management
(ERP/SCM), system development, technical platforms, and management
services. SYSteams knowledge of the trade lies in trading, wholesale, and
industry.

E.23.2 Transcription

The developers at SYSteam/Spektra1 use C and C++ when developing
software. Mr. Lae explained that the company has developed an ERP system
which is sold to Norwegian and Swedish industry. He also told me that he
has some code which he has been working on for a long time, and in this
context, reuse of code is using methods/functions and adjusting them.

The developers have a foundation library which is used in a host of contexts.
The contents of the library is used for a lot of things, and changed to suit
different needs. This foundation routine library has existed for 10 years.

One of the most important effects of reuse is speed; Mr. Lae stated that
not reusing is not an option, as the developers need to be efficient. Almost
just as important is the safety of knowing that components work. Another
reason for reuse is uniformity; when several developers work on the same
problems, they need to solve them in the same way. The libraries establish
a way to solve the problems, and a standard for how things are done. These
desired effects are actually achieved.

Mr. Lae remarked that sometimes, it would be better to produce new code
instead of reusing. This doesn’t happen often, however, it is more usual that
code is not reused when it should be. He feels the developers should reuse
more often.

The central element of code reuse is as mentioned a common routine library,
with accompanying documentation. There are no formalized reuse specific

1The contents of this interview are only valid for SYSteam/Spektra.



APPENDIX E. INTERVIEWS 82

procedures for reuse (library/remaining code). Tools for text search and
comparison (UNIX-like “grep” and “compare” commands) are used in con-
nection with reuse and adjustments of this code, but no tools specifically
produced for code reuse are employed.



APPENDIX E. INTERVIEWS 83

E.24 X — Deriga AS

At Deriga AS I interviewed head of development, Torje Lundereng. The
interview lasted for a quarter of an hour.

E.24.1 About the Company

Deriga AS is a Norwegian company, located in Trondheim. Deriga’s goal is
to cover the need for secure and reliable information exchange, primarily in
the health sector. This is done by offering simple, user friendly and efficient
IT tools. The company has 8 employees. 3 of them develop software.

E.24.2 Transcription

The programming language primarily used by the developers at Deriga is
C++, but Java is also used occasionally. Mr. Lundereng told me that the
development department has a policy on reuse; when code is written, it
should be as general as possible, especially if the code might be useful for
other projects.

The developers try to keep “cut and paste” to a minimum, and libraries
are the most common form of reuse. Code which is not considered reusable
is not put in libraries. When a piece of code is considered to be reusable,
it could be put in an already existing library, or a new library with an
appropriate name has to be created. The code is subject to version control,
and is available to all the developers on a common server.

The desired effects of code reuse are saved time and not having to “re-invent
the wheel”. These effects are truly achieved; Mr. Lundereng stated that the
libraries get extensive, and so reuse saves a lot of time, and it increases
the stability of the software. The developers try to find existing libraries
both internally and externally, but third party reusable libraries are not
commonly used. This is due to the fact that not too many third party
libraries for their application area exist.

No tools specifically produced for code reuse are employed. When it comes
to procedures for reuse, the developers have a policy stating that if code
is written which has the same functionality as already existing code, the
previously developed version is to be used — possibly with some added
functionality.



APPENDIX E. INTERVIEWS 84

E.25 Y — NetIT AS

For the final interview I spoke to software developer Joar Holme at NetIT
AS. The interview lasted circa 10 minutes.

E.25.1 About the Company

NetIT AS is a Norwegian company located in Oslo. The company deliv-
ers professional business systems and operational solutions for Small and
Medium sized Enterprises (SME). NetIT has 9 employees, of which 2 de-
velop software.

E.25.2 Transcription

The developers at NetIT recently went from C++ to C# .NET as their
primary programming language. Previously, there has also been a lot of Web
programming (JScript, VBScript) and a few projects using Visual Basic.
Some of the developers’ projects are similar, and in these cases it is natural
to reuse the code.

The desired effects of code reuse are not having to rewrite code, increased
development speed and more stable code. These effects are achieved, if
not to the extent the developers wish. They hope the transition to C#
might increase both the level of reuse and the positive effects of reuse. A
downside to trying to reuse is the possibility of over-generalization; when
the developers are eager to reuse, components might have been made too
general or the components might not be reused often enough to be worth
the effort.

The developers have built what might be called library files for reuse. Mr.
Holme gave an example: Scripts for Web pages are separated into different
files. Routines for different functionalities (such as database access) are
stored in different files. This enables routines with similar functionalities to
be reused later. All code is subject to version control. No tools or procedures
specific to reuse are employed.



Bibliography

[1] Camilla Fledsberg. Prosessorientert kvalitetssystem i praksis. Master’s
thesis, NTNU, June 2003.

[2] Kristen Ringdal. Enhet og mangfold. Fagbokforlaget Vigmostad og
Bjørke AS, 1 edition, 2001.

[3] Bruna Galobardes. Key steps in planning a survey. Soz.- Präventivmed.,
47:349–351, 2002.

[4] Fritz Scheuren. What is a survey. Published on the ASA’s web page:
http://www.amstat.org/sections/srms/pamphlet.pdf, June 2004.

[5] Kevin Boone. How to conduct a survey. Published on author’s web page:
http://www.kevinboone.com/howto survey.html, July 2004.

[6] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in Software Engineering
- An Introduction. Kluwer Academic Publishers, 2000.

[7] Steinar Kvale. Det kvalitative forskningsintervju. Ad Notam Gyldendal,
1997.

[8] Tor-Erik Hauge. Gjenbruk i it-bedrifter — utvikling og trender. Master’s
thesis, Høgskolen i Stavanger, June 2003.

[9] Tom Davenport and Gilbert J. B. Probst. Knowledge Management Case
Book: Siemens best practises. Wiley, John & Sons, Incorporated, 2002.

85


