A Taxonomic Attempt at Comparing SPI Frameworks
(-- in an Efficient and Objective Way?)

Christian P. Halvorsen Reidar Conradi
Norks Informatikkkonferanse 2000 (NIK’2000)
20-22 November, 2000, Bodø

Agenda

- General discussion of SPI
- Comparison of SPI frameworks
 - Why compare?
 - Four classes of comparison methods
- Our new taxonomy
 - General discussion of the taxonomy, with six categories
 - Proposed classification of 6 frameworks using the taxonomy
Software Process Improvement (SPI)

- Usual assumption: Product quality depends on process quality
 \[\text{Quality}(\text{Process}) \Rightarrow \text{Quality}(\text{Product}) \]
- Structured in various SPI frameworks, e.g. CMM, ISO 9000, SPICE
- Problem areas between technology and organization

Why Compare SPI Frameworks?

- Practical insight and guidance needed for SPI framework selection
 - Which SPI framework is appropriate for the organization? (for novices)
 - How to combine aspects of several frameworks? (for experts)
- Organizational context:
 - No prior SPI strategy in place
 - Implementation of several SPI frameworks
Comparison Difficulties

- Costly and time-consuming
- No comparison method appropriate for all situations
- Knowledge-level of user
 - Appropriate level of detail
- Point of view
 - General or from a specific framework?

Classes of Comparison Methods

- Characteristics
- Framework mapping
- Bilateral comparison
- Needs mapping
Characteristics
- High-level/general overview
 - Starting-point for further investigations
- Characteristics should be objective, measurable and comparable
- Purpose: Point out areas of interest when investigating SPI frameworks

Framework Mapping
- Map from statements/concepts of one framework to those of another
 - Beneficial when several SPI frameworks are used
- Purpose: Identify overlap/correlation between frameworks, i.e. which parts are equal?
- Ex.: Tingeys book, 1997

Bilateral Comparison
- Textual description
- Can describe one framework in terms of another
- Purpose: Summarize or explain findings from other comparison methods
- Ex.: Pauk's ISO 9001 vs. CMM

Needs Mapping
- Identification of requirements from organization or environment
 - May limit choice of SPI framework
- Purpose: Examine external requirements that influence SPI framework selection
- Ex.: Customer requiring ISO 9001 certification
Attributes of the Proposed Taxonomy

- Characteristics comparison method
 - 25 characteristics from misc. literature
 - Grouped into 5 categories:
 - General
 - Process
 - Organization
 - Quality
 - Result

- Starting point for further investigation

- Proposed classification of TQM, CMM, ISO 9000, SPICE, EF/QIP/GQM, SPIQ

SPI Characteristics: First two categories

1. General
 - Geographic origin/spread
 - Scientific origin
 - Development/stability
 - Popularity
 - Software specific
 - Prescriptive/descriptive
 - Adaptability

2. Process
 - Assessment
 - Assessor
 - Process improvement method
 - Improvement initiation
 - Improvement focus
 - Analysis techniques
SPI Characteristics: Last three categories

3. Organization
- Actors/roles/stakeholders
- Organization size
- Coherence

4. Quality
- Quality perspective
- Progression
- Causal relation
- Comparative

5. Result
- Goal
- Process artifacts
- Certification
- Cost of implementation
- Validation

Table: Characteristics and Measures

<table>
<thead>
<tr>
<th>Category</th>
<th>Characteristic</th>
<th>CMM v1.1</th>
<th>EF/QIP/GQM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic</td>
<td>Geographic Origin/Spread</td>
<td>U.S./World</td>
<td>U.S./World</td>
</tr>
<tr>
<td>Scientific</td>
<td>TQM, SPC</td>
<td></td>
<td>Partly TQM</td>
</tr>
<tr>
<td>Development</td>
<td>Since 1986</td>
<td></td>
<td>Since 1976</td>
</tr>
<tr>
<td>Popularity</td>
<td>Top (esp. in U.S.)</td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td>Software</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptive</td>
<td>Both</td>
<td></td>
<td>Descriptive</td>
</tr>
<tr>
<td>Adaptable</td>
<td>Limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>Org. maturity</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Assessor</td>
<td>Internal and external</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Process</td>
<td>IDEAL</td>
<td></td>
<td>QIP</td>
</tr>
<tr>
<td>Improvement</td>
<td>Top-down</td>
<td></td>
<td>Iterative bottom-up</td>
</tr>
<tr>
<td>Focus</td>
<td>Management processes</td>
<td></td>
<td>Experience reuse</td>
</tr>
<tr>
<td>Analysis</td>
<td>Assessment questionnaires</td>
<td></td>
<td>GQM</td>
</tr>
<tr>
<td>Organization</td>
<td>Management</td>
<td></td>
<td>Experience factory, project organization</td>
</tr>
<tr>
<td>Organization</td>
<td>Large</td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>Coherence</td>
<td>Internal</td>
<td></td>
<td>Internal</td>
</tr>
</tbody>
</table>
Causal Relations in SPI Frameworks

- **Process quality difficult to determine:**
 - Quality indicators
 - Multi-factor problem: Experiment

- **Comparison method influences quality:**
 \[F''(\text{Comparison method}) \Rightarrow F'(\text{SPI framework}) \Rightarrow F(\text{Quality indicator}) \Rightarrow \text{Quality(Process)} \Rightarrow \text{Quality(Product)} \]

<table>
<thead>
<tr>
<th>Category</th>
<th>Characteristic</th>
<th>CMM v1.1</th>
<th>EFQM/GQM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
<td>Quality Perspective</td>
<td>Management</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Progression</td>
<td>Staged</td>
<td>Continuous</td>
</tr>
<tr>
<td>Causal Relation</td>
<td>F(Key process areas) ⇒ F(Maturity level) ⇒ Q(Process) ⇒ Q(Product)</td>
<td>F(Experience reuse) ⇒ Q(Process) ⇒ Q(Product)</td>
<td></td>
</tr>
<tr>
<td>Comparative</td>
<td>Yes, maturity level</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>Process improvement, supplier capability determination</td>
<td>Organization specific</td>
<td></td>
</tr>
<tr>
<td>Process Artifacts</td>
<td>Process documentation, assessment result</td>
<td>Experience packages, QM models</td>
<td></td>
</tr>
<tr>
<td>Certification</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Implementation Cost</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Validation</td>
<td>Surveys and case studies</td>
<td>Experimental and case studies</td>
<td></td>
</tr>
</tbody>
</table>
Concluding Remarks

- Proposed taxonomy is not final
- Empirical evaluation of the taxonomy is necessary
 - Guidelines for filling-in the table?
 - Reliability of classification between observers?
- How should the taxonomy be used in the selection process -- company-specific weights, number scale?