A Multi-Agent Architecture for Cooperative Software Engineering

by

Alf Inge Wang, Reidar Conradi and Chunnian Liu

Dept. of Computer and Information Technology
Norwegian University of Science and Technology
Agenda

- Background / Motivation
- Presentation of a Multi-Agent Architecture
 - Agents
 - Workspaces
 - Agoras
 - Repositories
- An industrial scenario
- Application of our Architecture to the Scenario
- Conclusion
Background / Motivation

- SPT often focuses on strict organised, pre-planned way of working
- Introduce the term CSE
- Problem with traditional process architecture:
 - Too centralised
 - Too homogenous models
 - Hard to change tools and models
 - Need for open-ended spectrum of cooperative process tools
Multi-Agent Architecture (MAS)

Network of problem solvers

Advantages of MAS are:
- Decentralisation
- Reuse of previous components
- Cooperative work support
- Flexibility
Multi-Agent Architecture for CSE

CAGIS Multi-Agent Architecture:

- Agents
 - System agents
 - Local agents
 - Interaction agents
- Workspaces
- Agoras
- Repositories
Agent

- Piece of autonomous software
- System agents
- Local agents
- Interaction agents
 - Communication agents
 - Negotiation agents
 - Coordination agents
 - Mediation agents
Workspace (WS)

- Human and software agents access shared data and tools
- Private and shared workspaces
- Shared workspaces used for grouping people
Agora

* Place for software agent interaction
* Trading of information and services
* Facilities for:
 * Inter-agent communication
 * Provide a predefined set of conversation types
 * Specify a common syntax
 * Specify a common semantics
 * Specify pragmatics for agents
 * Inter-Agent Negotiation
Repository

- Information server
- Important types:
 - Production repository
 - Experience Base
- Software agent services
Interconnection of components

- Agents are created by people
- Agents are grouped mainly as people
- Interaction between agents is via Agoras
- Agents use repositories
- Within a group of agents, any process models are allowed
An industrial scenario

- Norwegian software company
- Developing products for MS NT and various UNIX platforms

Diagram:
- **Maintenance**
 - First line support
 - Maintenance group
 - Upd/Rel Plan group
- **Development**
 - Development group
- **Delivery**
 - Delivery/shipment group
- **Production & testing**
 - Production/QA group
A Multi-Agent Architecture for Cooperative Software Engineering

- First-line support
 - classification
 - forwarding
- Maintenance planning
 - register
 - estimate
 - allocate
- Development
 - coding
 - correction
 - module test
 - merging
- Update/Release planning
 - update per quarter
 - release per year
- Market/Technology requirements
- Resources
- Defect priority
- EB
- Change order
- Work order
- Agora 1
- Agora 2
- Customer reports
Conclusion

_advantages:
- Flexible and dynamic support
- Secretaries
- System adopts to changes
- Selection of process models

Advantages:
- Flexible and dynamic support
- Secretaries
- System adopts to changes
- Selection of process models

Disadvantages:
- Hard to get overview
- Termination of process, dead-locks