Chapter 11

Model-based risk assessment in a component-based software engineering process – using the CORAS approach to identify security risks

Ketil Stølen¹, Folker den Braber¹, Theo Dimitrakos², Rune Fredriksen³, Bjørn Axel Gran³, Siv-Hilde Houmb⁴, Yannis C. Stamatiou⁵ and Jan Øyvind Aagedal¹

¹Sintef Telecom & Informatics, Norway; {kst,fbr,joer}@sintef.no; ²CLRC Rutherford Appleton Laboratory, UK; t.dimitrakos@rl.ac.uk; ³Institute for Energy Technology, Norway; {runef,bjornag}@hrp.no; ⁴Telenor R&D, Norway; siv-hilde.houmb@telenor.com; ⁵Computer Technology Institute, Greece; stamatiu@cti.gr

Abstract: The EU-funded CORAS project (IST-2000-25031) is developing a framework for model-based risk assessment of security-critical systems. This framework is characterised by: (1) A careful integration of techniques and features from partly complementary risk assessment methods. (2) Patterns and methodology for UML oriented modelling targeting the different risk assessment methods. (3) A risk management process based on AS/NZS 4360. (4) A risk documentation framework based on RM-ODP. (5) An integrated risk management and system development process based on UP. (6) A platform for tool-inclusion based on XML.

This chapter describes and explains the CORAS approach to model-based risk assessment. The ability to aid risk assessment in a component-based software engineering process receives particular attention. We consider maintenance, composition as well as reuse of risk assessment results.

Key words: risk assessment, component-based software, modelling, IT security, maintenance
1. INTRODUCTION

CORAS [10] aims for improved methodology and computerised support for precise, unambiguous, and efficient risk assessment of security-critical systems. The CORAS project focuses on the tight integration of viewpoint-oriented semiformal modelling in the risk assessment process, in the following referred to as model-based risk assessment. Model-based risk assessment differs from traditional risk assessment in the sense that it

– combines complementary risk assessment methods for assessing different models of the target of evaluation;
– gives detailed recommendations for the use of modelling methodology in conjunction with risk assessment;
– provides modelling methodology to support the documentation of risk assessment results.

An important aspect of the CORAS project is the practical use of the Unified Modelling Language (UML) [32] and the Unified Process (UP) [21] in the context of security and risk assessment.

CORAS addresses security-critical systems in general, but places particular emphasis on IT security. IT security includes all aspects related to defining, achieving, and maintaining confidentiality, integrity, availability, non-repudiation, accountability, authenticity, and reliability of IT systems [17]. An IT system for CORAS is not just technology, but also the humans interacting with the technology and all relevant aspects of the surrounding organisation and society.

The CORAS consortium consists of three commercial companies: Intracom (Greece), Solinet (Germany) and Telenor (Norway); seven research institutes: CTI (Greece), FORTH (Greece), IFE (Norway), NCT (Norway), NR (Norway), RAL (UK) and Sintef (Norway); as well as one university college: QMUL (UK). Telenor and Sintef are responsible for the administrative and scientific coordination, respectively. CORAS started in January 2001 and runs until July 2003. Since CORAS is an ongoing project, the approach presented in this chapter may not be fully implemented in the final version of the CORAS framework.

The remainder of the chapter is divided into six sections: Section 2 presents the CORAS framework. Section 3 motivates a contract-oriented approach to documenting risk assessment results. Sections 4, 5 and 6 consider maintenance, composition and reuse of risk assessment results, respectively. Section 7 provides a brief summary and the main conclusions.
2. THE CORAS FRAMEWORK

As illustrated in Figure 1, the main focus of the CORAS framework is model-based risk assessment; moreover, the framework is founded on four pillars: (1) A risk documentation framework based on RM-ODP [16]. (2) A risk management process based on AS/NZS 4360 [1]. (3) An integrated risk management and development process based on UP [21]. (4) A platform for tool-inclusion based on XML [5].

In the following subsections we describe the rationale behind the CORAS framework, its main focus as well as the four pillars.

![Figure 1. The CORAS framework](image)

2.1 The rationale

As illustrated in Figure 2, model-based risk assessment employs modelling methodology for three main purposes: (1) To describe the target of evaluation at the right level of abstraction. (2) As a medium for communication and interaction between different groups of stakeholders involved in a risk assessment. (3) To document risk assessment results and the assumptions on which these results depend.
The choice of model-based risk assessment is motivated by several hypotheses:
- Risk assessment benefits from correct descriptions of the target of evaluation, its context and security issues. The modelling methodology furthers the precision of such descriptions, and this is likely to improve the quality of risk assessment results.
- The graphical style of UML facilitates communication and interaction between stakeholders involved in a risk assessment. This may improve the quality of risk assessment results, and reduce the danger of throwing away time and resources on misconceptions.
- The modelling methodology facilitates a more precise documentation of risk assessment results and the assumptions on which their validity depends. This is likely to reduce maintenance costs by increasing the possibilities for reusing and updating assessment results when the target of evaluation is maintained.
- The modelling methodology provides a solid basis for the integration of assessment methods. This may improve the effectiveness of the assessment process.
- The modelling methodology is supported by a rich set of tools from which the risk assessment benefits. This may improve the quality of assessment results and reduce costs. It may also further productivity and maintenance.
- The modelling methodology provides a basis for tighter integration of risk management in the system development process. This may
considerably reduce development costs and ensure that the specified security level is achieved.

2.2 The risk documentation framework

The CORAS risk documentation framework is a specialisation of the Reference Model for Open Distributed Processing (RM-ODP) [16]. RM-ODP is an international standard reference model for distributed systems architecture, based on object-oriented techniques. RM-ODP divides the system documentation into five viewpoints. It also provides modelling, specification and structuring terminology, a conformance module addressing implementation and consistency requirements, as well as a distribution module defining transparencies and functions required to realise these transparencies.

The CORAS risk documentation framework is a specialisation of RM-ODP and can be understood as a reference framework for model-based risk assessment. RM-ODP contains many features that are not directly relevant for risk assessment. All RM-ODP features are, however, relevant for distributed systems. Since most IT systems of today are distributed or at least components of distributed systems, the CORAS risk documentation framework contains RM-ODP in full. On the other hand, the CORAS risk documentation framework refines only those parts of RM-ODP that are directly relevant for risk assessment of security critical systems. The CORAS risk documentation framework refines RM-ODP in the following manner.

- The RM-ODP terminology is extended with two new classes of terminology, namely, concepts for risk assessment and security. Figure 3 illustrates the relationship between some of the most important notions in the risk assessment terminology.
- The RM-ODP viewpoint structure is divided into concerns targeting security in general and model-based risk assessment in particular. As illustrated in Figure 4, concerns may be understood as specialised cross-viewpoint perspectives linking together related information within the five viewpoints. The concerns are further decomposed into models. A model provides the content of a concern with respect to a particular viewpoint. For each model there are guidelines for its development, including concrete recommendations with respect to which modelling languages to use.
- The RM-ODP conformance module is extended with additional support for conformance checking targeting concerns.
Figure 3. The CORAS terminology

Figure 4. Relationship between viewpoints, concerns and models
The CORAS risk documentation framework also provides libraries of reusable elements. These may be understood as specification fragments or patterns and templates for formalising risk assessment results capturing generic aspects suitable for reuse.

Finally, there are also plans to extend RM-ODP with a specialised risk assessment module containing a risk assessment process, risk assessment methodologies, international standards on which CORAS builds as well as integration formats for computerised tools.

2.3 The risk management process

Figure 5. The role of UML in the CORAS risk management process
For each of these sub-processes, the CORAS methodology gives detailed advice with respect to which models should be constructed, and how they should be expressed. Figure 6 assigns concerns to the five sub-processes. Note that, even if the sub-processes are sequenced, AS/NZS 4360 is iterative and allows feedback.

Models expressed in the Unified Modelling Language (UML) [32] are used to support and guide the risk management process. The four diagrams to the right in Figure 5 illustrate:

- specification of the target of evaluation with the help of a UML class diagram (aspect of the target of evaluation concern listed in Figure 6);
- specification of a threat scenario with the help of a misuse case diagram [31] (example element of the threat scenarios concern listed in Figure 6);
- specification of the assets to be protected with the help of a UML class diagram (aspect of the assets concern listed in Figure 6);
- specification of an unwanted incident with the help of a UML class diagram (example element of the unwanted incidents concern in Figure 6).

Figure 6. The relationship between concerns and the risk management process
2.4 The integrated risk management and system development process

The CORAS integrated risk management and system development process is based on an integration of the risk management process described above in the Unified Process (UP) [21]. In the following paragraphs we highlight the defining characteristics of this integrated process, as summarised in Figure 7.

In analogy to UP, the system development process is both stepwise incremental and iterative. In each phase of the system lifecycle, sufficiently refined models of the system are constructed through subsequent iterations. Then the system lifecycle moves from one phase into another. In analogy to the RM-ODP viewpoints, the viewpoints of the CORAS framework are not layered; they are different abstractions of the same system focusing on different groups of stakeholders. Therefore, information in all viewpoints may be relevant to all phases of the lifecycle.

![Figure 7. The integrated risk management and system development process](image)

The risk management process follows the main iterations made in the system development process, as indicated in Figure 8. Each of the main
iterations adds more detail to the target and the context of the assessment and previous results may need to be re-evaluated.

A set of agreed system requirements is one important outcome of the inception and elaboration phases. These requirements may be relevant to several viewpoints and can be described using a selection of different description methods, which are classified per concern. As one cannot expect that all security requirements are present from start, they have to be elicited. We anticipate that (appropriately adapted) model-based security risk assessment can also help with eliciting security requirements. However, risk assessment methods are traditionally designed to cope with unwanted incidents arising from design errors rather than specification problems related to missing requirements. For risk assessment to play a significant role in the elaboration phase, the CORAS risk assessment methods are being adapted to address requirement elicitation properly.

![Figure 8. Relating risk management to system development](image)

2.5 The platform for tool inclusion

A platform for tool inclusion based on data integration is under construction. Its internal data representation is formalised in the Extensible Markup Language (XML) [5]. Based on the Extensible Stylesheet Language Transformations (XSLT) [7], relevant aspects of this data representation may be mapped to the internal data representations of other tools (and the other
way around). This allows the inclusion of sophisticated case-tools targeting system development as well as risk assessment tools and tools for vulnerability and threat management.

As indicated in Figure 9, the CORAS platform is supposed to offer three interfaces for XML based data exchange:

- Interface based on the Intrusion Detection Exchange Format (IDMEF) [11]. IDMEF is an XML DTD targeting tools for intrusion detection and has been developed by the Intrusion Detection Working Group.
- Interface based on the XML Metadata Interchange (XMI) [29] standardised by the Object Management Group and targeting tools for UML modelling.
- Interface targeting risk assessment tools.

The CORAS platform will contain a repository divided into two sub-repositories: (1) The assessment repository storing the concrete results from already completed assessments and assessments in progress. (2) The reusable elements repository storing reusable models, patterns and templates from already completed risk assessments. Both sub-repositories mirror the decomposition into viewpoints and concerns illustrated in Figure 4.
The CORAS risk assessment methodology is a careful integration of techniques and formats inspired by HazOp Analysis [30], Fault Tree Analysis (FTA) [14], Failure Mode and Effect Criticality Analysis (FMECA) [4], Markov Analysis [25] as well as CRAMM [2].

The integrated risk assessment methods are to a large extent complementary. They address confidentiality, integrity, availability as well as accountability; in fact, as indicated by Table 1, all types of risks/threats/hazards associated with the target system can potentially be revealed and dealt with using these methodologies. They also cover all phases in the system development and maintenance process.

Table 1. The relevance of risk assessment methodologies

<table>
<thead>
<tr>
<th>Identify context</th>
<th>HAZOP</th>
<th>FTA</th>
<th>FMECA</th>
<th>Markov</th>
<th>CRAMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify risks</td>
<td>In case of brief system description</td>
<td>Address all security aspects</td>
<td>Top-down starting from unwanted outcomes</td>
<td>Bottom-up for critical sub-parts</td>
<td>Focus on data groups</td>
</tr>
<tr>
<td>Analyse risks</td>
<td>As input for FTA/ FMECA/ Markov</td>
<td>Address top events, basic events, and likelihood</td>
<td>Address failure modes and consequences</td>
<td>Address system states, and likelihood</td>
<td></td>
</tr>
<tr>
<td>Evaluate risks</td>
<td>As input</td>
<td>Compare with criteria</td>
<td>Compare with criteria</td>
<td>Compare with criteria</td>
<td></td>
</tr>
<tr>
<td>Treat risks</td>
<td>Identify treatment options</td>
<td>Address priorities</td>
<td>Address barriers and counter-measures</td>
<td>Support maintenance</td>
<td>Identify counter-measures</td>
</tr>
</tbody>
</table>

Risk assessments are both costly and time-consuming, and cannot be carried out from scratch each time a system is updated or modified. This motivates the need for specific methodology addressing the maintenance of...
In the following we propose an approach to component-based risk assessment based on contract-oriented documentation of risk assessment results. An assessment contract consists of two parts, an assessment assumption describing the target of evaluation as well as other pre-conditions on which the assessment builds, and an assessment guarantee describing assessment results for the component in question with respect to the assessment assumption.

The documentation of risk assessment results in the form of assessment contracts, mirrors the contract-like flavour of the risk management process. As illustrated in Figure 5 the risk management sub-process “Identify Context” involves: (1) Establishing the strategic, organisational and risk management context. (2) Identifying and valuing assets. (3) Identifying existing security policies and formulating risk evaluation criteria. The concerns documenting the results from this sub-process constitute the assessment assumption.

The four subsequent sub-processes identifies, analyses, evaluates and treats risks with respect to the assessment assumption resulting from the “Identify Context” sub-process. In this sense, the concerns documenting the results from these four sub-processes constitute the assessment guarantee. Hence, with respect to Figure 6, the concerns listed under “Identify Context” records the assessment assumption, while the others capture the assessment guarantee.

In the following we outline how the CORAS approach may be used to support component-based risk assessment given that risk assessments are documented in the form of assessment contracts as suggested above.

4. MAINTAINING ASSESSMENT RESULTS

IT systems are updated or modified on a regular basis. Connected to such updates or modifications it is often necessary to reassess their security since changes may have introduced new risks. In the next two sub-sections we consider maintenance of assessment results with respect to two different kinds of component modifications.

4.1 When components are maintained

In the following we address maintenance of risk assessment results for the situation where a component for which we have already carried out a risk
assessment is updated or adjusted without being changed in a fundamental manner.

4.1.1 Outline of approach

The target for a risk assessment may only be a certain part or feature of the component in question. Hence, the first step when maintaining a risk assessment for a component undergoing minor updates is to check whether the updates and adjustments are within the target of evaluation. If they are not and they do not invalidate the conditions put down in the assessment assumption, the existing assessment carry over unchanged.

On the other hand, if the updates and adjustments are within the target of evaluation or invalidate the assessment assumption, it will be necessary to reassess at least some of the concerns documenting the assessment guarantee. CORAS is developing specialised rules and guidelines to support this kind of reassessment exploiting relationships and dependencies between concerns.

4.2 When components are replaced

In the following we address the situation illustrated in Figure 10, where a component for which we have already carried out a risk assessment is updated by replacing one of its sub-components by a new sub-component. Assume we have a component A+B+C consisting of three sub-components A, B and C. Moreover, assume we have carried out a risk assessment for A+B+C documented by the assessment RA:A+B+C. If sub-component C is replaced by sub-component D then we would like a strategy for making use of the assessment RA:A+B+C to arrive at an assessment RA:A+B+D of the new component A+B+D.

\[\text{Figure 10: Replacing sub-component C by D} \]
4.2.1 Outline of approach

In accordance with the previous case, the first step is to situate the old and the new component with respect to the target of evaluation and the other conditions put down in the assessment assumption. If neither C nor D are situated within the target of evaluation, and D does not invalidate the assumptions on which the assessment RA:A+B+C depends, the validity of the existing assessment carries over to A+B+D.

If this is not the case, specialised rules and guidelines exploiting relationships and dependencies between concerns may be used to simplify the reassessment. One simple rule is, for example, to check whether C contains a security asset or not. If it does not, and in addition, black-box testing implies that any external behaviour of D is an external behaviour of C, and D is without security assets, we may conclude that the assessment results for A+B+C remains valid for A+B+D.

Black-box testing will of course normally not cover all cases (there will typically be infinitely many); hence, there is no guarantee that an important test-case is not left-out. On the other hand, there is no guarantee that a risk assessment will discover all threats.

5. COMPOSING ASSESSMENT RESULTS

In the following we address the situation illustrated in Figure 11, where two components, A and B, for which we have risk assessment results RA:A and RA:B, respectively, are composed. We indicate ways in which the CORAS approach may support the deduction of risk assessment results for the composite component from the assessment results for A and B.

![Figure 11. Composing assessment results](image-url)
5.1 Outline of approach

The first step is to situate the components A and B with respect to the assumptions of the assessments RA:B and RA:A, respectively. If we from this inspection conclude that the component A and its composition with B does not affect the target of evaluation RA:B nor any of the additional conditions put down in its assessment assumption, and accordingly for B with respect to RA:A, it follows that the assessments RA:A and RA:B are valid for A+B (note that the assumptions of the two assessments remain unchanged).

The premises for this inference will of course often be invalid, in which case more sophisticated rules and guidelines will be required to make full use of the already existing assessment results. Rules and guidelines of this kind are under development in the CORAS project.

6. REUSING ASSESSMENT RESULTS

Traditionally, system development methodologies focus on the development of single systems. More recently, the emphasis has shifted towards the development of system product lines. Inspired by [9], we define a system product line, as a set of systems that share a common, managed set of features satisfying the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way. According to [2], components provide the perfect foundation for the practical application of product line development. Other examples of product-line oriented system development methods are FODA [23], FAST [33] and TIMe [6]. In the following we outline CORAS support for reuse of assessment results in a product-line oriented system development.

6.1 Outline of approach

A critical factor in the success of a product line approach is the nature of the reusable “core”. As argued in [2], “… at a minimum this should contain a reference architecture supported by techniques for capturing and selecting the points of variation among family members. In its most general form, the reusable asset takes the form of a framework, which embodies implementation (i.e., code level) artefacts for the common parts of the family, as well as higher-level design and architecture models. Since they embody every possible reusable asset, at all levels of abstraction,
frameworks constitute the largest possible reusable artefacts for a particular product family.”

The CORAS framework is intended to support a product-line approach to system development in the following sense.

- For each artefact we may store assessment relevant information in the reusable elements repository. When a development of a new product is initiated, this assessment relevant information will be loaded into the assessment repository for each artefact to be reused.
- If the particular use of an artefact requires maintenance in the sense of Section 4.1, the assessment relevant information will first be updated based on the strategy outlined in Section 4.1.1.
- If a new product requires replacing a sub-component in an artefact to be reused by another sub-component in the sense of Section 4.2, the assessment relevant information will first be updated based on the strategy outlined in Section 4.2.1.
- To the extent a new product requires composing artefacts in the sense of Section 5, an assessment of the composite artefact may be carried out based on the strategy outlined in Section 5.1.
- To the extent a new product also requires the development of completely new components from scratch, the reassessment of early assessment results (for example, the results from an assessment carried out during the inception phase) at a later point in the development may benefit from the strategies outlined in Sections 4.1.1, 4.2.1 and 5.1.

7. CONCLUSIONS

CORAS advocates model-based risk assessment. Model-based risk assessment is put forward as a means to improved efficiency of the risk assessment process as well as more reliable assessment results, since the understanding of the target of evaluation is enhanced by precise specifications of its structure and behaviour. Firstly, we argue that UML diagrams give a superior specification of system behaviour compared to free text or other informal formats. Secondly, a model-based risk assessment facilitates communication, both internally between the actors involved in the risk assessment and externally to the stakeholders. Thirdly, improved precision is not only of importance to understand the target of evaluation and the set of possible threats, but also for the documentation of the risk assessment results and the assumptions on which their validity depends. As explained in Sections 3-6, structured documentation of risk assessment results and the assumptions on which they depend provides the basis for
maintenance of assessment results as well as a component-based approach to risk assessment.

The CORAS project runs until July 2003. The development of the CORAS methodology and framework is guided by concrete experiences from two major trials, one within e-commerce and one within telemedicine. Both trials are divided into three trial sessions. The first trial session took place in January 2002, and the final trial sessions are planned for January 2003.

There are of course other approaches to model-based risk assessment. See for instance CRAMM [3], ATAM [8], SA [34] and RSDS [24]. The particular angle of the CORAS approach with its emphasis on security and risk assessment tightly integrated in a UML and RM-ODP is however new.

Contract-oriented specification has been suggested in many contexts and under different names. Within the RM-ODP community one speaks of contracts related to quality of service specification [12]. In the formal methods community there are numerous variations; the pre/post [13], the rely/guarantee [22] and the assumption/guarantee [28] styles are all instances of contract-oriented specification. Other more applied examples are the design-by-contract paradigm, introduced by Bertrand Meyer [26], and the UML based approach advocated by Mingins/Liu [27].

Since 1990, work has been going on to align and develop existing national and international schemes in one, mutually accepted framework for testing IT security functionality. The Common Criteria (CC) [18] represents the outcome of this work. The Common Criteria project harmonises the European “Information Technology Security Evaluation Criteria (ITSEC) [20]”, the “Canadian Trusted Computer Product Evaluation Criteria (CTCPEC)” and the American “Trusted Computer System Evaluation Criteria (TCSEC) and the Federal Criteria (FC)”. The CC is generic and does not provide methodology for risk assessment. CORAS, on the other hand, is devoted to methodology for risk assessment. Both the CC and CORAS places emphasis on semiformal and formal specification. However, contrary to the CC, CORAS addresses and develops concrete specification technology addressing risk assessment. The CC and CORAS are orthogonal approaches. The CC provides a common set of requirements for the security functions of IT products and systems, as well as a common set of requirements for assurance measures applied to the IT functions of IT products and systems during a security evaluation. CORAS provides specific methodology for one particular kind of assurance measure, namely risk assessment of security critical systems.
REFERENCES