
Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 1

Balancing Technological and
Community Interest: The Case of
Changing a Large Open Source Software
System

Abstract. This paper studies the process of rewriting and replacing critical parts of a
large open source software (OSS) system. Building upon the notions of installed based
and transition strategies, we analyze how the interaction between the OSS and the
context within which it is developed and used enables and constrains the process of
rewriting and replacement. We show how the transition strategy emerges from and
continuously changes in response to the way the installed base is cultivated. By
demonstrating a mutual relationship between the transition strategy and the installed
base, we show how the transition strategy in this particular case changes along three
axes: the scope of the rewrite, the sequence to replace existing software, and the actors
to be involved in the process. The paper is concluded with some implications for how to
study the process of rewriting and replacing OSS.

Keywords. Open source software development. Rewrite and replacement.
Transition strategy. Installed base.

Introduction
Parallel development, a rapid release schedule, actively involved users, and
prompt feedback are described as key characteristics of open source software
(OSS) development (Feller & Fitzgerald 2002). Empirical studies of OSS
development have therefore primarily focused on the cyclic process of corrective
and adaptive maintenance (German 2005), its organization (Crowston & Howison
2005), and analysis of the products of this process (Paulson et al. 2004,
Samoladas et al. 2004, Mockus et al. 2002). Describing the process of rewriting
the FreeBSD kernel, Jørgensen (2001) shows that unlike the discretely delineated

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 2

tasks of adaptive and corrective maintenance, rewriting OSS is a longitudinal
process that does not lend itself well to parallel development, rapid release
schedule, and active user involvement. While we know that large and successful
OSS products are rewritten–for instance the original Apache code was rewritten
and replaced with a modular design in 1995, and several large subsystems of the
Linux kernel, like virtual memory handling, have been rewritten and replaced
throughout the kernel's life cycle–we find that rewriting and replacing is an
underdeveloped topic within OSS research.

Building upon Jørgensen's (2001) work, we study the repeated attempts at
rewriting and replacing a core OSS system. The empirical basis for this paper is a
study of the PenguinOS Linux distribution (PenguinOS is a pseudonym to
anonymize the case). The background for the study is that the PenguinOS
package manager, the core of the PenguinOS Linux distribution "is very fragile
[because it has] evolved rather than being designed", as one of the PenguinOS
developers puts it. Studying the attempts at rewriting and replacing the package
manager provides an excellent opportunity to study the problems associated with
rewriting and replacing critical parts of a large OSS system. To this end, we ask:
How does the interaction between the OSS and the context within which it is
developed and used enable and constrain the process of rewriting and
replacement? In this paper we analyse this by studying the relationship between
the installed base and transition strategies (Hanseth and Monteiro 1998) in the
process of rewriting and replacing the PenguinOS package manager.

The remainder of the paper is structured as follows. The second section
motivates the study of rewriting and replacing OSS through the notions of
transition strategies and installed base. These two terms are elaborated. The third
section outlines the case; presenting the research setting, as well as describing
three attempts at rewriting and replacing the package manager. In the fourth
section we discuss the case along two dimensions that surface in the case: the
issue of resources and transition strategies as a process. The final section contains
concluding remarks, where we describe how we have addressed the research
question and implications of our findings to the study of rewriting and replacing
OSS.

Methodologically, the paper is based on an interpretive case study (Klein &
Myers 1999) of the PenguinOS OSS community. The data was primarily
collected during a ten months programme of participant-observation conducted
from March to December 2004. Since the OSS community is geographically
distributed, participant-observation took the form of observing and participating
on the Internet Relay Channels (IRC) that the community use for communication,
by submitting and resolving failure reports, as well as contributing with code.
Throughout the period of fieldwork the IRC channels we participated on were
logged to disk; one file each day for each IRC channel totalling 1027 files. A key
informant also provided us with his IRC logs, stretching back to April 2003. No

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 3

formal interviews of participants in the OSS community were undertaken,
although informal talks with participants–both on e-mail and on IRC–were
conducted on a regular basis to test our informal theories about the fieldwork. 71
documents were collected throughout the period and organized in a documentary
database. Online data sources that provide static data were surveyed. These
include the PenguinOS bug tracking database, the PenguinOS mailing list
archives, and the PenguinOS revision control system. As the PenguinOS Web site
is under revision control, relevant documents from this Web site were not
organized in the documentary database. Instead, we decided to rely on
PenguinOS's revision control system. This archival material provided us with data
from 2002 to the end of 2005. A more thorough presentation of the research is
provided in (reference undisclosed for reviewing purposes).

Theory
Jørgesen (2001) describes the process of implementing symmetric multi-
processing, a significant new feature, in the FreeBSD operating system kernel.
Although the paper describes in detail the practical arrangements for making the
significant change and folding it into the main code base, the paper tells little
about the context and rationale for organising the process this way. However, the
paper provides little information about how the OSS developers decide upon the
specifics of this process of going from one version of the software to other. We
expand upon Jørgensen's (ibid.) work, by examining how OSS developers make
such decisions. We do so by analysing the OSS an information infrastructure (II)
(Hanseth and Monteiro 1998), studying the process of rewriting and replacing the
PenguinOS package manager in terms of transition strategies and installed base.

Transition strategies

The transition strategy is a plan outlining how to go from one stage of the II to the
other (Monteiro 1998). However, the transition strategy is caught in a dilemma,
"where the pressure for making changes … has to be pragmatically negotiated
against the conservative forces of the economical, technical, and organizational
investments in the … installed base" (ibid., p. 230). Controversies over a
transition strategy are therefore negotiations about how big changes can–or have
to– be made, where to make them, and when and in which sequence to deploy
them.

Whereas Jørgensen (2001) describes the sequencing when rewriting a clearly
delineated part of the software, thinking in terms of transition strategies enables
us to study the larger process of rewriting software encompassing what is to be
rewritten and the scope of the changes, important factors in the process of
rewriting the PenguinOS package manager.

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 4

Installed base

The installed base can be defined as the interconnected technologies and practices
that are institutionalised in an organization (Hanseth and Monteiro 1998).
Adopting this view, we see that changes cannot be made to software artefacts in
isolation, but must always take into account the other elements of the installed
base that the artefact is connected to.

This points towards two important elements when thinking in terms of
installed base. One, II's must evolve by extending and improving the existing
installed base, or cultivating the installed base as it is called (ibid.). Two, as II's
grow, it becomes increasingly hard to extend and improve it because of the many
elements that have to be changed in the process. This is called the inertia of the
installed base (ibid.).

Actor-network theory

Like II, actor-network theory (ANT) is the underlying ontology for this study as
well. We therefore mobilise a limited ANT vocabulary inscribed in and circulated
by Callon (1986) and Latour (1987) for the case description and analysis of this
paper. Well aware of recent movement toward fluids and fiery objects both within
ANT and IS research, we choose to mobilise this vocabulary as it translates well
our interest in bringing forth the chronic tension of multiple and at times
contradictory interest in cultivating the PenguinOS installed base.

A major focus of ANT is to provide a way of tracing and explaining the
process of how networks of actors, actor networks, become more or less stable
through the alignment of interest. Particular to ANT is that the notion of actors
encompasses both human and non-human actors such as software technologies,
documents, and so on.

The process wherein networks of aligned interest are created and maintained,
is called translation. Through the process of translation the translating actor
defines other actors, endowing them with interests and problems to be overcome.
By framing a problem in such a way that it determines a set of actors, the
translating actor defines and aligns the other actors' interests with his own (Callon
1986). The problem is framed in to establish the translating actor as an obligatory
passing point by enrolling and mobilising the other actors to pass through this
point to achieve their interests.

Translation is therefore the process of enrolling a sufficient body of actors by
aligning these actors' interests so that they are willing to participate in particular
ways of acting. It implies definition, and this definition is inscribed in material
intermediaries (Latour 1986). These intermediaries are actors in their own right.
They are delegates who stand in for and speak for particular interests; they are the
medium in which interests are inscribed. The operation or translation is therefore

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 5

triangular: it involves a translating actor, actors that are translated, and a medium
in which the translation is inscribed.

The Case of Rewriting and Replacing PackMan
GNU/Linux distributions, complete operating systems that integrate the Linux
operating system kernel with a collection of software libraries and applications,
are an intrinsic part of the success of Linux. Since the beginning of the Linux
kernel development in the early 1990s, communities of OSS developers have
created GNU/Linux distributions. As GNU/Linux distribution consists of
thousands of different software libraries and applications, distribution developers
primarily repackage third-party OSS, doing whatever adaptations required for the
third-party software to function on their specific GNU/Linux distribution. At the
time of writing, there are over 300 Linux distributions, large and small–some
developed commercially, others developed by volunteers–registered with the
DistroWatch (2006) Web site. In this paper we report from a study of the OSS
community developing the PenguinOS Linux distribution, rated by DistroWatch
among the ten most widely used distributions.

Starting out as a one-man volunteer project in 2000, by 2003 the number of
volunteer PenguinOS developers had grown to over 200. The number of third-
party software libraries and applications, collectively labelled packages,
supported by the PenguinOS Linux distribution had also grown. From being a
GNU/Linux distribution, PenguinOS had over time been turned into a generalized
software system for distributing OSS software packages for different Unix
operating systems like BSD and MacOS. By 2003 PenguinOS suffered
increasingly from growth pains.

Organizationally, they PenguinOS developers addressed the growth pains by
introducing a formal management structure in June 2003: "The purpose of the
new management structure is to solve chronic management, coordination and
communication issues in the PenguinOS project" (reference undisclosed for
reviewing purposes). Technically, by mid-2003 growth pains were putting a strain
on the PenguinOS package manager, PackMan, the software that integrates
packages on local PenguinOS systems. It is from the repeated attempts at
rewriting and replacing the package manager that we report in this paper.
Although all of the PenguinOS developers can agree that the package manager
needs to be rewritten and replaced, this turns out to be problematic. After
numerous attempts, the PenguinOS developers give up. Why is it that they fail to
rewrite and replace the package manager? We provide an overview of these
attempts in the rest of this section, before we address the above question during
the discussion in section 4.

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 6

First attempt

It is mid-November 2003. Four developers make a forceful declaration of intent
during the biweekly PenguinOS managers' meeting: "We are aggressively
working on plans for next generation PackMan, which is not going to simply be a
rewrite or a new version but beyond people's wildest expectations". The source
code of the current version of PackMan "is very fragile [because it has] evolved
rather than being designed". It has become difficult to comprehend and maintain,
preventing the PenguinOS developer community at large from participating in
developing and maintaining the package manager. Currently, only a "small group
[of PenguinOS developers] really know how to make significant contributions to
the code".

To enrol the PenguinOS developer community with the rewrite effort, the four
developers provide an architecture diagram (see Figure 1). The diagram
graphically lays out the main parts of the package manager, the interface between
these parts of the system, and which features will be supported as components.

Figure 1 PackMan-ng architecture diagram

By rewriting PackMan with a core system and "a solid API for components
[where] major parts that are now core PackMan are going to be implemented as
components", the four developers explain, "components can be developed by
different teams [of PenguinOS developers", turning PackMan into "a true
community project". To achieve this end, they continue, PackMan "is not just to
be 'robust enough' but incredibly reliable".

The architecture diagram serves to meet the interests of two other actors.
Performance of the package manager has been a point of discontent among the
people administrating PenguinOS systems. Furthermore, a number of PackMan-
specific applications that are part of the PenguinOS software distribution operate
directly on PackMan's database and configuration files. A recurring problem with
changing the format of these configuration files and databases, is that some of the

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 7

PackMan-specific tools cease to function. To meet these interests, the four
developers are developing a prototype of the core system.

The prototype is realized in GNU Prolog, as this programming language can
meet the above interests. Prolog can provide "robust, provably correct code".
GNU Prolog has an API for components to be written "in C for performance
when needed". However, the final choice of realization language is to grow out of
the requirements. "Right now," the four developers explain, "we are at the
blueprint stage … the plan is to get a solid blueprint, then make it a community
project at the earliest possible point". While the four develop the blueprint and the
prototype, they enrol the PenguinOS developer community at large to formulate
requirements for the rewrite.

No one in the community questions the rationale for rewriting PackMan from
scratch with a modular architecture. However, the choice of Prolog for a
prototype produces resistance. How can Prolog resolve the problem of
performance, when "Prolog could be very slow"? one developer asks. Also, how
can PackMan be turned into a true community project when only very few
PenguinOS developers are familiar with the predicate-logic programming
paradigm of Prolog? The choice of realization language will produce a high entry-
barrier, some developers argue.

The promised Prolog prototype fails to manifest, and in mid-December 2003 a
competing prototype realized in Ada appears. Throughout November and
December the four developers planning to rewrite PackMan keep on trying to
enrol the PenguinOS developer community with their plan by pointing out time
and again that the choice of realization language is to emerge from the
requirements. However, instead of formulating requirements, the PenguinOS
developer community delve into endless discussions about the best programming
language for rewriting PackMan.

By February 2004 all activities on this attempt to rewrite PackMan have
ceased.

Second attempt

On February 18 2004 a new CVS module called PackMan-mod is imported into
the PenguinOS CVS repository with the following note attached: "All current
work between me and George moved from remote cvs to PenguinOS cvs!".
Where PackMan-ng is a complete rewrite of PackMan from scratch, PackMan-
mod is an effort to take the existing PackMan code and modularize it. Niles, a
PenguinOS developer, is heading the effort with help from George, a newcomer
to PenguinOS and not yet an official PenguinOS developer.

While Niles is modularizing the existing PackMan source code, George will
help writing unit tests. According to the README file imported with the CVS
module, the plan is that the "[d]evelopment of a package structure should

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 8

facilitate the later development of an consistent PackMan API, development of
this API is part of this project and development should … begin once PackMan
modularization is done and a unit testing framework is done."

Development on PackMan_mod is undertaken in parallel with the continued
development and maintenance of PackMan. When the code is modularized, the
plan is to rework changes made to PackMan during the period of modularization
into the modularized version. However, it turns out that the changes made are too
significant to achieve this, and this second attempt at rewriting and replacing
PackMan is laid to rest.

Interlude

"I have a feature request for you", Bob states on the PackMan developers' IRC
channel. It is mid-April 2004. Bob is a newcomer to the PenguinOS community,
having only recently been adopted by the PenguinOS community to introduce
web application support for PenguinOS. "The configuration tool for web
applications need to edit the PackMan database," he continues, "so that a single
web application may be installed multiple times on different locations in the file
system. " The PackMan developers cannot see the purpose of such functionality.
A discussion ensues. In the end Bob argues that if the PackMan developers cannot
provide this functionality for him, he cannot provide support for web applications
in PenguinOS. Reluctantly the PackMan developers agree with Bob about a
technical solution to address his requirements.

Third attempt

In wake of the second attempt at rewriting PackMan, the remaining developer
from that effort sets out to write an API on top of the existing implementation of
PackMan. There is unanimous support for this effort among the other PenguinOS
developers. The effort, while a continuation of parts of the second attempt at
rewriting PackMan, also enrols the interests of two other developers who have
been working to establish an API to insulate PackMan-specific applications from
PackMan's configuration files and databases. This will solve the recurring
problem of these applications breaking when the format of the configuration files
and databases are changed. Furthermore, the API will insulate the core
functionality of PackMan, so that after the API is in place modularization of
PackMan may find place without disrupting users.

Work on this third attempt at rewriting PackMan ceases after a month and a
half. The developer working on the API explains the situation:

The whole API was designed around a single using application [that] would instigate the
reading of the configuration, etc. … that doesn't fit in at all with distributed computing and/or
remote management [which is something] people will ask for and/or want to implement

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 9

themselves down the track. [It is therefore] better to preempt it now than find we've shot
ourselves in the foot later.

The new approach for PackMan is to completely rewrite it with a core running
as a Unix daemon with user applications calling the daemon remotely.

Upon the first author ending the fieldwork in December 2004, there are two
independent efforts at rewriting PackMan. One effort by a young engineering
student who has rewritten the core PackMan functionality in C, who fails to
attract the PackMan developers' attention. Another effort by one of the PackMan
developers to use experience from PackMan to write an independent package
manager. This, he specifies, is "not a PackMan killer, but rather an independent
implementation". However, in the future, his package manager may come to
replace PackMan. As of writing this paper in November 2006, a new version of
PackMan 2.0.51 is released, being simply the same code as in 2003 only with bug
fixes and feature enhancements.

Although all of the PenguinOS developers can agree that the package manager
needs to be rewritten and replaced, after numerous attempts they give up. Why is
it that they fail to rewrite and replace the package manager?

Discussion
A number of problems are raised in connection with rewriting PackMan.
Complex interdependencies between both modules and functions within the
software makes it is difficult to understand parts of the software without a
complete understanding of the whole. Interdependencies also make it difficult to
make changes without breaking existing functionality. Because of this, only four
PenguinOS developers know the source code well enough to make changes.
Combined with the recurring problems of third-party applications, many of which
operate directly on PackMan's different data bases with their proprietary data
structures, ceasing to function after changes have been made to PackMan, the
number of developers who can make meaningful changes to PackMan limits its
continued development and maintenance of PackMan.

This is the situation that the PenguinOS developers time and again present and
draw upon for motivating and explaining the interests and interest groups for
rewriting the PackMan code and to justify their suggested solutions. The texture
of the situation remains largely unchanged throughout the period. The problems
they frame and the interests the PenguinOS developers construct all emerge from
this context. In this section we will look closer at how this context enables and
constrain the process of rewriting and replacing PackMan.

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 10

Mobilizing resources, balancing interests

Why do the repeated attempts at rewriting PackMan fail? Towards the end of
April 2004, the PenguinOS developers describe the first attempt at rewriting
PackMan as "hot air", "vaporware", and "mostly a buzzword". A predominant
explanation for the repeated failures is exemplified by the following quote:

A rewrite is a MAJOR waste of extremely limited resources. Unless PenguinOS gets MANY
more PackMan devs OR can manage without a PackMan update for 6-12 months, a rewrite
won't happen in any reasonable time … In the mean time, what happens with the existing
implementation? Do you [have people] work on it? Or do you let it sit idle/stagnant. The
amount of time it'd take would really drag out on the developers that want new features and
simplifications … Resources are why the rewrites failed.

The issue of limited resources is the recurring explanation. The demise of both
next generation PackMan and PackMan modularized are explained in terms of the
strain on developer resources. However, given the number of PenguinOS
developers, the programming resources within the community are significant. It is
these resources the next generation PackMan developers want to tap in by turning
PackMan into "a community project". It is therefore not because resources
themselves are scarce that the rewrite efforts fail. The problem facing those who
want to rewrite PackMan can be framed by Glass (1999, p.104)'s befuddlement:
"I don’t know who these crazy people are who want to write, read and even revise
all that code without being paid anything for it at all." Similarly, based on the
observation that the interests, needs, and know-how of OSS community members
varies greatly, Bonaccorsi & Rossi (2003, p.1244) asks: "[h]ow is it possible to
align the incentives of several different individuals"?
It is this selfsame problem the various efforts to rewrite PackMan is facing: how to
align the interests of the community at large in order to mobilize the resources for
rewriting? In the first attempt at rewriting PackMan, turning the package manager
into "a true community project" goes through the four developers who will
rewrite PackMan with a core system and "a solid API for components [where]
major parts that are now core PackMan are going to be implemented as
components". By framing a set of problems and actors whose interests are
blocked by these problems, the four developers tries to mobilize resources (Callon
1986) for rewrite and replace PackMan. These translations are summarized in
Figure 2 below.

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 11

Figure 2 The PackMan-ng developers' translations

However, it is not only a question of mobilizing any odd resources. The
problem of the next generation PackMan developers is that they want to mobilize
particular resources. By translating interests into modules that clearly delineated
boundaries between actors and their interests, and by inscribing these as boxes in
an architecture diagram, the four developers make the architecture diagram stand
in for their translations, making them more durable. Through the use of boxes,
labels, and clearly separating between boxes, the architecture diagram provides an
overview of dependencies between various parts of the architecture; in other
words: it inscribes a sequence of work.

By saying that the programming language for realizing next generation
PackMan is to emerge from the requirements, they are mobilizing resources to do
the requirements work first, while leaving to the small next generation PackMan
team to write the core system first. As such, the resources they want to mobilize
are for writing the plugins. However, the effect of proposing Prolog in the design
and for the prototype is that resources are spent in discussing implementation
language details and problems with using Prolog. While the Prolog prototype is
intended to act as a focal point for mobilizing resources for developing plugins, as
it fails to materialize there is no mobilization and resources become scarce.

However, the explanation that resources is the reason why the rewrites failed
has to been seen in as deeply embedded in and emerging from the context. It is

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 12

worth noting that although a number of objections over the plan for the first
attempt at rewriting PackMan, nobody questioned the feasibility of the effort. Yet,
six months down the line, the PenguinOS developers argue that lacking resources
is why the effort failed. What has happened?

Resources are scarce because there is a competition for resources within
PenguinOS, as well as the constant need to attract new developer resources. The
whole PenguinOS effort relies on the sustained interest of users and developers.
As observed with many large OSS projects, the key process for quality assurance
is users reporting failures to the developers (Feller & Fitzgerald 2002). As
Mockus et al. (2004) observes: the number of people reporting software failures
greatly exceeds the number of developers. The sustained interest of user is
therefore important for the PenguinOS community.

The mechanism for sustaining this interest lies in the continued improvement
and enhancement of the software, "improvements and simplifications" as put in
the above quote. What we see throughout the period is therefore that the existing
PackMan application continues to change. Attracting new developers is a concern
for the community, as the number of unresolved failure reports is continuously
growing for PenguinOS. Adding functionality to PackMan is also seen as a way
of recruiting new developers. A concrete example is the way Bob is recruited to
the community by the promise that he can implement web application support for
PenguinOS. However, being a member of the community involves
responsibilities, and resolving failure reports is one of these responsibilities. So,
recruiting new developers by adding new features to PackMan is not only a way
of enhancing the software, but also a way of mobilizing resources for addressing
the growing number of failure reports.

When the PenguinOS developer above questions how the PenguinOS
community can manage without a PackMan update for 6 to 12 months, he is
alluding to constant need for balancing between the need for technical stability for
rewriting PackMan on one hand, and the need for adding new functionality to
attract new development resources and keep existing developers interested in the
project.

Transition strategy as a processes

Whereas in Jørgensen's (2001) description of the process of rewriting the
FreeBSD kernel the scope of the changes and the sequence of actions seem
unproblematic, we see that rewriting and replacing PackMan is a continuous
process of negotiating over the scope of the changes to be made, their sequence,
and which actors to be involved in the process. It is about formulating a transition
strategy (Monteiro 1998) for the transition from one version of the package
manager to the other.

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 13

Formulating this transition strategy is a process of continuously balancing
numerous interests. On the one hand there is the interest in keeping stable the
features of the software to be rewritten. On the other hand, use of the software to
be rewritten continues to evolve and users have interest in the existing software to
evolve accordingly. A balance must be struck between these interests. However,
this balance point is continuously negotiated and renegotiated, and any attempt to
rewrite the software has to remain flexible to these changes.

As much as formulating a transition strategy is about imposing stability of the
entire package manager, it is a negotiation over what parts to keep stable and
what to change. We see this in the focus in the attempts to rewrite PackMan:
going from a complete rewrite of the whole artefact, to a modularization of the
existing code, to the introduction of an API on top of the existing code. It is a
longitudinal process of translation spanning months, during which the identity of
actors and the boundaries of what is to remain stable with PackMan and what can
change are continuously negotiated. The actors' margins of manoeuvre, their
possibilities of making incontestable statements about the efforts to rewrite and
replace, is delimited through this process of translation.

When one of the PackMan developers in hindsight says that rewriting
PackMan from scratch "is a MAJOR waste of extremely limited resources", the
statement tells us nothing about why next generation PackMan failed. Nor does it
tell us anything general that rewriting software from scratch requires a lot of
resources. Rather, the statement bears testament of how the PenguinOS
developers' margins of manoeuvre is limited by the installed base. There is no
longer room to state that it is possible to rewrite PackMan from scratch. Again,
this does not provide us with the means to make generalized statements that
rewriting software artefacts from scratch is never feasible because of a
continuously changing installed base.

Furthermore, what we see is that to better control the process of rewriting and
replacing, the boundaries of the involved actors are limited. From encompassing
the entire PenguinOS developer community with the rewrite of next generation
PackMan, the scope of involved actors are seriously reduced in both PackMan
modularized and the attempts at writing an API on top of the existing code. When
a PenguinOS developer in hindsight explains that "waiting for the community to
provide requirements … doesn't work", the statement tells us nothing about why
next generation PackMan failed. Nor does it leave us any margins of manoeuvre
to make generalized statements about the number of actors involved that can be
involved in successfully rewriting and replacing information systems. Rather,
what it does tell us is that how the inertia of the installed base limits the
PenguinOS developers' margins of manoeuvre in making statements about the
number of involved actors in the process of rewriting and replacing software.

What we can generalize, however, is this. The formulation of a transition
strategy is constituted through a continuous negotiation with the installed base.

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 14

This process of negotiation is a process of balancing the interests of the involved
actors – both technical and non-technical. It is a process initiated by the
construction of problems and actors with interests, but it is also a process from
which new problems emerge. With new problems, existing actors change and new
actors emerge. As interests "are what lie in between actors and their goals, thus
creating the tension that will make actors select only what, in their own eyes,
helps them reach these goals amongst many possibilities" (Latour 1987, pp. 109-
110), new relationships between actors change. As actors and their interests
change, so does that which lies in between them: the interests. As such, rather
than being an end product in itself, the transition strategy is continuously
formulated and reformulated through a process of continuously emergent
problems, actors, and interests enables and constraints the task of rewriting and
replacing PackMan.

Concluding remarks
In this paper we show how a transition strategy for rewriting and replacing OSS
emerges from and continuously changes in response to the installed base. There is
a mutual relationship between transition strategies and the context of use and
development. The way transition strategies changes the context feeds back to
change the transition strategy. We show how this mutual influence changes the
transition strategy along three axes: the scope of the rewrite, the sequence to
replace the package manager, and the actors to be involved in the change process.

While the entire PenguinOS community can agree upon the need to replace the
existing system, we show how the existing system's ability to continuously meet
the community's interests are greater than the perceived benefits of replacing the
system. Although the introduction of an API on top of PackMan redirects existing
connections to PackMan, the transition strategies of the PackMan developers
were unable to redirect new connections to the existing PackMan code, like those
made for web application support. We show that battling the inertia of the
installed base, then, is not only about changing existing connections from the
software being replaced towards its replacement (Hanseth and Monteiro 2002). It
is also about the ability to redirect new connections to the installed base to the
replacement software throughout the process of rewriting and replacement.

In order to understand and analyse processes of rewriting and replacement, it is
therefore important to understand the rationalities and logics in play by different
actors. It is important not only to take the actors' own explanations of the world
for real, but also to understand the logic and rationality of their explanations in
the eyes of the other actors without giving any undue privilege to either view.
Furthermore, statements of the world need to be contextualized, when were they
made and in response to what, in order for the information systems researcher not
to be locked into single actors' views as true and thereby seeing other actors'

Author(s): IRIS 2007 Instructions

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 15

views as false. As information systems researchers it is also important not to lock
on to and give priority to some actors' techno-economic rationalities, but rather to
remain sensitive to our own academic techno-economic bias and challenge this
through careful analysis of the statements made by those we study.

References
Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in Practice, Addison-

Wesley, Boston, Massachusetts.
Bianchi, A., Caivano, D., Marengo, V., and Visaggio, G. (2003). Iterative reengineering of legacy

systems. IEEE Transactions on Software Engineering, 29(3), 225- 241.
Bonaccorsi, A. and Rossi, C. (2003). Why open source software can succeed. Research Policy,

32(7), 1243-1258.
Callon, M. (1986). Some elements of a sociology of translation: Domestication of the scallops and

fishermen of St. Brieuc Bay. In The Science Study Reader (Biagioli, M. Ed.), Routledge,
New York, New York.

Crowston, K. and Howison, J. (2005). The social structure of free and open source software
development. First Monday 10(2).

DistroWatch (2006). The top ten distributions: A beginners' guide to choosing a (Linux)
distribution, http://distrowatch.com/dwres.php?resource=major. Last visited: November 25
2006.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development. Addison-
Wesley, London.

German, D. (2005). Software engineering practices in the GNOME project. In Perspectives on
Free and Open Source Software (Feller, J., Fitzgerald, B., Hissam, S.A., and Lakhani, K.R.
Eds.), p. 211, The MIT Press, Cambridge, Massachusetts.

Glass, R. (1999). Of Open Source, Linux and Hype. IEEE Software, 16(1), 126-128.
Hanseth, O. and Monteiro, E. (1998). Understanding Information Infrastructures. Unpublished

manuscript, available at http://heim.ifi.uio.no/~oleha/Publications/bok.html.
Jørgensen, N. (2001). Putting it all in the trunk: Incremental software development in the

FreeBSD open source project. Information Systems Journal, 11(4), 321-336.
Klein, H.K. and Myers, M.D. (1999). A set of principles for conducting and evaluating

interpretive field studies in information systems. MIS Quarterly, 23(1), 67-93.
Latour, B. (1987). Science in Action. Harvard University Press, Cambridge, Massachusetts.
Mockus, A., Fielding, R.T., and Herbselb, J.D. (2002). Two case studies of open source software

development: Apache and Mozilla. Transaction son Software Engineering and Methodology,
11(3), 309-346.

Monteiro, E. (1998). Scaling information infrastructure: The case of the next generation IP in
Internet. The Information Society . 14(3), 229-245.

Paulson, J.W., Succi, G, and Eberlein, A. (2004). An empirical study of open-source and closed-
source software products. IEEE Transactions on Software Engineering, 30(4), 246-256.

Samoladas, I, Stamelos, I, Angelis, L., and Oikonomou, A. (2004). Open source software
development should strive for event greater code maintainability, Communications of the
ACM, 47(10), 83-87.

