Embedded Systems and Microcontrollers

Dr. Gaute Myklebust
Director, Product Development
Atmel Corporation

Atmel Norway -- AVR Microcontroller

- Atmel Norway designs the AVR Microcontroller Family
- Predecessor: µRISC
 - Developed as a Diploma Thesis at NTH (NTNU)
 - In cooperation with Nordic VLSI
- Used as internal workhorse in several Nordic VLSI ASICs
- Processor core acquired by Atmel Corporation autumn 1995
- Atmel Norway started November 1st, 1995

What is a Microprocessor

- Definitions are fairly consistent
 - “A computer with its entire CPU contained on one integrated circuit.”
 - “A central processing unit implemented on a single chip.”
 - “A silicon chip that contains a CPU”
- Common understanding too narrow
 - Intel Pentium architectures
 - PowerPC
- Embedded Processors Account for 98% of the world’s microprocessors

What is an Embedded System?

- Definitions vary
 - “An Embedded System is any electronic product that incorporates a microprocessor”
 - “An Embedded System is a computer that is incorporated into another device, such as a car.”
- Examples
 - Cellular Phones
 - PDAs
 - Cars
 - Washing Machines
 - Battery Chargers

What is a Microcontroller?

- Processor Core
- Memories
- Digital Input/Output
- Analog Input/Output
- Peripherals
 - UART, USB
 - Timers
 - And more

Integrates a number of required components in an embedded system.

Existing microcontrollers

- Atmel AVR
- Motorola 68HC05, 68HC08, 68HC11, 68HC12
- Intel 80C51, 80C251
- Hitachi H8/300, H8/500, H8S
- Microchip PIC16, PIC17, PIC18
- ARM7, ARM7T, ARM9, ARM10
- Texas Instruments TMS370, MSP430
- Mitsubishi M16C, M32C
- And many more...
Embedded Systems usually incorporate one or several microcontrollers.

Microcontroller Applications
- POS Terminals
- Cars
- Battery Chargers
- Cellular Phones
- Harddisks
- Keyboards, Mice, ...
- Laser Printers

Applications in a Car
- ABS
- Anti-spin
- Instrument Panel
- Cruise Control
- Keyless entry
- Anti-Collision System

AVR Block Diagram
- 64-pin Device (56 I/O, 8 Special Function)
- 128 Kbytes ISP Self-programmable Flash
- 4Kbytes SRAM
- 4Kbytes EEPROM
- 10-bit ADC with 8 Multiplexed Inputs
- Separate 32 kHz Oscillator with RTC
- Software Selected Clock Frequency
- UART, SPI, TWI
- Built-in Emulator support
- and more ...

Peripheral Example: A/D converter
- ADC Control and Status Register (ADCSR)
- ADC data register (ADCH, ADCL)
- Successive approximation logic
- 10-bit DAC
- 8-channel Mux

Peripheral Example: Digital I/O
- DDRx
- PORTx
- PINx
- Direction: INPUT
- Pull-Up: OFF (Tri-State)
Peripheral Example: Sleep controller

- Idle mode
 - CPU stopped
 - Peripherals and oscillator running
 - Typical power consumption: 10% of execution

- Power down mode
 - CPU stopped
 - Peripherals and oscillator stopped
 - Typical power consumption: 0.01% of execution

- Essential for battery powered applications

C Programming – need Extensions

- Initialization function for Hardware setup
- Special Function Register (SFR) for I/O access
- Interrupt functions
- Monitor functions for critical regions
- Routines for accessing Flash
- Intrinsic functions:
 - SFI, CLI, NOP, OPC, LPM, SLEEP, WDR
- EEPROM access routines

C Example: SFR / Intrinsic

```c
sfrb MCUCR = 0x35;
sfrb GIMSK = 0x3B;

int __low_level_init(void)
{
  GIMSK = 0xC0; /* Enable ext interrupts */
  MCUCR = 0x0F; /* Rising edge enable */
  _SEI(); /* Enable interrupts */
  return(1);
}
```

C Example: Interrupts

```c
interrupt[INT0_vect] void myInterruptHandler(void)
{
  unsigned char ucData;
  ucData = PORTB;
  if(ucData & 0x80)
    FunCall(ucData);
}
```

Developing a Microcontroller

- Specification
- Digital design and Verification
- Analog design and Verification
- Digital/analog Co-verification
- Lay-out
- Final Verification

Digital Design

- CPU, Interrupt Controller, DMA, Peripheral Functions etc.
- Developed in HDL (Verilog)
- Verification on HDL model
- Module Reuse and Improvement
- IP Modules
- HDL synthesis

Verilog Example:

```verilog
always @ (posedge clk )
begin
  // Register write
  if((adr==UCSRB_adr)&iowe) begin
    rxcie <= `DD dbus[7];
    txcie <= `DD dbus[6];
    ubrie <= `DD dbus[5];
    rxen <= `DD dbus[4];
    txen <= `DD dbus[3];
    chr9 <= `DD dbus[2];
  end
end
```
Analog Design

- Memories, ADCs, DACs, Regulators, Oscillators, PADS, etc.
- Analog modules implemented as schematic drawings
- Digital Interfaces
- IP Modules
- Process shrink (libraries) 0.35µ, 0.25µ, 0.18µ, 0.13µ

Lay Out

- The Digital Design has been synthesized to a low level representation
- The Digital Design has to be merged with the Analog Design
- The Lay Out must meet performance and size constraints

Silicon Die

- AVR Die Sales Program
 - AVR devices available in Die Form
- Micro Lead Frame Packaging
 - Low cost package technology
 - Very good noise immunity substrate connected to ground
 - Smallest standard package available
 - Near chip-scale package size; Save up to 69% of board space

New Package Options

<table>
<thead>
<tr>
<th>Size in millimeters</th>
<th>SOIC / NSOP</th>
<th>MLF</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x 5</td>
<td>5 x 5</td>
<td>81</td>
</tr>
<tr>
<td>12 x 12</td>
<td>7 x 7</td>
<td>144</td>
</tr>
<tr>
<td>16 x 16</td>
<td>9 x 9</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size in millimeters</th>
<th>SOIC / NSOP</th>
<th>MLF</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x 5</td>
<td>5 x 5</td>
<td>81</td>
</tr>
<tr>
<td>12 x 12</td>
<td>7 x 7</td>
<td>144</td>
</tr>
<tr>
<td>16 x 16</td>
<td>9 x 9</td>
<td>250</td>
</tr>
</tbody>
</table>

Development Tools

- Complete suite of development tools needed to be made
- ANSI compliant C Compilers
- Macro-Assemblers
- Linkers/Librarianes
- Debuggers/Simulators
- RTOS
- In-Circuit Emulators
- Evaluation boards
- Programmers
- Design notes, Application notes and Reference designs

STK500 Development Board

- Supports all AVR devices
- Supports all Operating Systems
- Interfaces with AVR Studio
- Early support for new devices
Emulators

- Complete C and Assembly Source Code for AT904433 and ATtiny15
- Code library for SLA, NiCd, NiMh and Li-Ion Batteries
- Complete Battery Charger design based on Buck Converter
- RS-232 Port For General Use

Battery Charger Reference Design

The Internet

- Information
 - Services
 - Bank services
 - Shopping
- Remote Control
 - Smart House, Video, Alarm, Camera
- Automatic
 - Washing machine
 - Micro Wave Oven
 - Refrigerator

Embedded Internet Toolkit

- Complete reference design for web server
- Full TCP/IP stack
- Complete modular C-source code
- Onboard Ethernet interface