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ABSTRACT 
In this paper we are going to explore low-level implementation 
issues for fault-tolerant adders based on multiplexing using 
majority gates (MAJ). 

We shall analyze the particular case of a 32-bit ripple carry adder 
(RCA), as well as different redundant designs using MAJ-3 
(MAJ of fan-in 3) multiplexed RCAs: (i) with classical MAJ-3 
gates in the restorative stages; (ii) with inverters driven by short-
circuited outputs at each restorative stage; and finally, (iii) only 
with short-circuited outputs at each restorative stage. From one 
solution to the next, the restorative MAJ-3 gates get simpler and 
simpler. These simplifications translate into different speeds and 
power consumptions; challenging aspects of future 
nanoelectronics. All these circuits have been designed and 
simulated in subthreshold. The speed and power will be reported 
and compared for designs in 0.18 µm as well as 70 nm (using the 
Berkeley Predictive Technology Model). The results reveal 
interesting power-speed-reliability tradeoffs. 

In two of these designs, depending on the way the MAJ-3 
function is implemented, defects translate into increased power, 
and suggest a (simple) way of detecting them. A detection circuit 
can trigger reconfiguration at a higher level, leading to a 
seamless transition from a fault-tolerant circuit to a defect-
tolerant system. The main advantage of such an approach would 
be that reconfiguration could be done on-line, i.e., while the 
circuit is still operating correctly. 

Keywords 
Architecture, defect/fault-tolerance, majority logic, multiplexing, 
power. 

1. INTRODUCTION 
Scaling of CMOS into the nanometer range raises many 
challenges [1]. The development of novel nanodevices leads to 
new challenges, including both the increasing power 
consumption,  and  the  need  for   architectures  that  reduce  the 
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uncertainty inherent to (nano)computations [2]–[4]. That is why, 
fault- and defect-tolerant architectures have recently received 
revived attention in the nanotechnology community [5]–[9]. One 
well-known approach for developing fault-tolerant architectures 
in the face of uncertainties (both defects and transient faults) is 
to incorporate spatial and/or temporal redundancy. Among the 
redundant design schemes, we should mention here: modular 
redundancy, cascaded modular redundancy, multiplexing (MUX, 
including von Neumann multiplexing [10] and parallel 
restitution PAR-REST [9]), as well as reconfigurability [5], [8], 
[11]. 

Reliable operation of a circuit can be achieved using redundancy 
at many different levels: at the device level [12], [13]; at the gate 
level [14], [15]; at the block level [16]; in time; and in 
communication (through encoding, e.g., [17]) (see also [3]–[9]). 
We note here that all of these have in common improved 
reliability, traded for increased chip area and higher 
connectivity. These lead to higher power consumption, and can 
also slow down the computations. 

The most common way of quantifying redundancy is to use a 
redundancy factor R, which indicates the multiplicative increase 
in circuit size (i.e., number of gates) required to attain fault-free 
operation, or equivalently, the ratio of the size of the fault/defect-
tolerant circuit to the size required in case of no faults. Cost-
effectiveness constraints dictate that redundancy factors must be 
small, or better, very small. Still, the increase in circuit area 
rather than increase in size is a more significant measure of 
redundancy, as suggested in [18] (where the authors also show 
how encoding in combination with replication can be used to 
minimize circuit area). 

In this paper, the focus will be on the gate and block levels. 
Section II provides a review of multiplexing (MUX) schemes, 
starting from the early work of von Neumann, and detailing 
recent variations and enhancements. A comparison of MUX with 
other techniques using redundancy shows significant advantages 
for MUX. The use of MAJ gates in MUX improves over MUX 
schemes based on NAND gates. That is why, in Section III we 



analyze different implementations for MAJ. Beside reliability, 
power has already become an important issue, hence we are 
going to discuss MAJ-3 gates targeted for subthreshold 
operation. Section IV will put all of these together, and present 
different configurations of a MAJ-3 MUX 32-bit adder. Only 
serial addition will be considered, as it outperforms parallel 
addition when operated in subthreshold [51]. Simulation results 
will be presented and discussed before concluding. 

2. ON MULTIPLEXING 
In [10], von Neumann introduced the multiplexing redundancy 
algorithm MUX as a plausible representation for reliable (neural-
inspired) computation. The MUX algorithm aims to improve the 
reliability of a sequence of computations. This ‘multiplexing’ of 
each computation serves to contain error propagation, by 
selecting the more-likely result at each stage. MUX was 
developed for arbitrary gates, including MAJ and NAND gates. 
Fig. 1 shows the executive stage followed by two restorative 
stages of a NAND-2 MUX. However, a detailed reliability 
analysis was performed for two-input NAND (NAND-2) gates 
only, assuming independent gate failures and very large 
redundancy factors. The performance of NAND-2 MUX was 
compared with the performance of other fault tolerance 
techniques in [3]–[7]. In [7], NAND-2 MUX was analyzed at 
small to moderate redundancy factors of 30, 300, and 3000. 
NAND-2 MUX has been analyzed using a CAD tool in [19]. 

The PAR-REST scheme [9] is of particular interest. The authors 
distinguish PAR-REST from NAND-2 MUX based on the fact 
that the computations are not collapsed after each layer of the 
circuit (see [9] for details) and that restorative stages are only 
used periodically. They show that PAR-REST can significantly 
improve upon NAND-2 MUX for small to moderate R. A similar 
approach was taken in [20], [21], where MAJ-3 gates were used 
instead of NAND-2. 

The issue of which gate to use is debatable. MUX can be applied 
to any logic gate, but for each new gate, and even for another 
fan-in value, the analysis must be redone. Following is a list of 
pros and cons. 

• NAND MUX requires two restoration stages, while 
MAJ requires only one. This leads to less area, shorter 
delay, less power, and less energy. Still, this is not as 
clear as it seems, as one NAND restoration could, in 
principle, be eliminated. 

• MAJ has an error threshold higher NAND (see Fig. 2). 
The error threshold for MAJ-k gates (for odd k) is the 
one determined in [22] and [23], while the error 
threshold for NAND-k gates was recently proven in 
[24]. The figure also suggests that MAJ gates of large 
fan-ins are (theoretically) better for improving 
reliability (see also [25]). 

• Finally, MAJ-3 MUX can achieve accurate 
computations for gate failure probabilities qMAJ-3  
< 0.0197 (see [21]). This outperforms the NAND-2 
gate failure probabilities qNAND-2 < 0.0107 (see [9] for 
a relevant discussion). 

The idea of using MAJ was presented in the original article of 
von Neumann [10]. Still, exact evaluation of the probability of 
failure at very small redundancy factors was analyzed and proven 
only recently [20], [21]. 

A single MAJ-3 MUX logic computation is presented in Fig. 
3(a). The MUX computation comprises an executive stage and a 
restorative stage. The executive stage repeats the desired logic 
computation a total of N times, operating on N different sets of 
inputs obtained from the previous computation. The restorative 
stage triplicates and randomly orders (see randomizer in Fig. 
3(b)) the outputs from the executive stage, and then chooses the 
majority of each randomly-chosen set of three signals using a set 
of N MAJ-3 gates, to generate the N final outputs. This 
restoration is central to the global performance of the MUX 
scheme. The purpose of the restorative stage is to reduce error 
propagation from a logic computation’s input to its output, by 
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Figure 2. The error thresholds for NAND and MAJ gates 
with respect to their fan-in. 
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Figure 1. NAND-2 von Neumann multiplexing. 
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Figure 3. (a) Generic MAJ-3 MUX, and (b) the N = 5 case. 



selecting the more common outputs from the computation. The 
restorative stage is only effective when the probabilities of error 
in the inputs are sufficiently large. In fact, for small input error 
probabilities, the chance of error introduced by the gates in the 
restorative stage might outweigh the advantage of having the 
restorative stage. Thus, if the input error probabilities for a 
particular logic computation are small enough, we can 
simultaneously improve the output error probability and 
economize (reduce the redundancy factor R) of any MUX design 
by eliminating the restorative stage. 

If one is seeking the best-performing architecture for a particular 
redundancy factor R, it has been shown that the standard MUX 
algorithm can be improved on by applying the restorative stage 
on only some computations, while simultaneously increasing the 
bundle size N. This idea was used in [21] to improve MAJ-3 
MUX. The same principle can be applied when using any other 
type of gate or combinatorial logic block. Let us consider 
architectures in which the logical depths of all inputs to a given 
computation are the same (in general this need not be the case). 
The enhanced MAJ-3 MUX(N, k) architecture is one in which an 
executive stage with bundle size N is used for all computations, 
and a restorative stage is applied only on every kth stage (i.e., for 
computations with logical depth k, 2k, … — while in general, 
the restorative stages could be distributed unevenly). The 
redundancy factor introduced by a MAJ-3 MUX(N, k) 
architecture is R = N + N / k. By placing the restorative stage 
only every kth stage, the bundle size N can be increased to 
N+ = [2k/(k+1)]×N for the same redundancy factor R. Obviously, 
this not only maximizes reliability, but also reduces delay, area, 
and power. A crude comparison of R-modular redundancy 
(RMR), NAND-2 MUX, reconfiguration, and the enhanced 
MAJ-3 MUX can be seen in Fig. 4. 

Another scheme, which takes advantage of periodic restoration 
to improve performance, is PAR-REST. A comparison between 
MAJ-3 MUX and PAR-REST is the most fair comparison of the 
reliability of MAJ-3 and NAND-2 architectures. The article [9] 
considers reliability over a duration of time (i.e., multiple clock 
cycles), and reports maximum failure probabilities when 90% 
reliability over ten years of processing is demanded. We have 
compared MAJ-3 MUX and PAR-REST using this reliability 
demand and identical chip specifications (as in [9]). At the 
smallest analyzed redundancy for PAR-REST (R = 48) MAJ-3 
MUX improves by a factor of 1.5x (2.3×10–4 versus about 
1.5×10–4). At R = 100 (the largest redundancy we have simulated 
for MAJ-3 MUX) the improvement factor is 4.25x (1.7×10–3 
versus about 4×10–4). 

These fresh results and enhancements on MUX show that the 
technique is able to start competing with reconfiguration (which 
is not able to deal with faults) for small redundancy factors, if the 
reconfiguration is performed on N > 103 logic blocks of 500 
transistors each (see [5] for details). 

Novel redundancy techniques that combine device-level ([12], 
[13]) and gate-level design ideas have also been presented [14]. 
In [15], the authors propose a redundant design approach that 
creates a rescaled weighted average of the redundant blocks’ 
outputs. This results in a multiple-valued logic representation of 
the function, and provides an effective means of absorbing faults. 

The authors show that the new design technique improves the 
immunity to permanent and transient faults occurring at the 
transistor level, and works even for R = 2. The paper suggests 
that dynamically adjustable threshold levels may further enhance 
this method. The solution presented in [14] precedes [15], and 
also has the advantage of lower power consumption for the case 
of fault-free operation. Other low-level approaches which we 
should mention here belong to the larger class of rad-hard by 
design [26], and high matching techniques used in analog 
circuits [27], [28] (recently used for enhancing the reliability of 
CMOS TLGs [12], and capacitive SET [13]). 

Very recently [17], examples of hardware architectures that 
incorporate one or multiple redundancy schemes (triple modular 
redundancy together with encoding) were tested using 
VHDL/Spice/Monte Carlo simulations. 

3. MAJORITY GATES 
Based on the discussion of the previous section, MAJ MUX 
schemes seem to have an edge over NAND MUX ones. It then 
becomes a question of how to implement the MAJ function. 
Before going further, we mention that MAJ functions can always 
be replaced by minority functions if the inputs are inverted and 
vice versa. That is why we are going to refer to these 
implementations as MAJ gates, even if sometimes the function 
they implement is the minority function. 

MAJ gates can be implemented in many different ways. A 
standard CMOS implementation is the well-known “mirrored 
adder” [29] (see Fig. 5). Domino logic gates could be used to 
improve the speed, but raise clock distribution problems, higher 
power consumption, and reduced noise margins (sensitivity to 
variations and clock skew). Differential logic could be another 
alternative, but with scaling, the leakage currents are going to be 
higher (as compared with the other logic styles) [30]. Using pass 
transistors/gates as a multiplexor, followed by an inverter (as 
buffer), is a very simple solution. This type of gates has been 
recently shown to work reliably even in subthreshold [31]. They 
are low power, but also kind of slow. Pseudo-nMOS (or its 
variations) have long been known and used for implementing 
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Figure 4. Comparison of RMR, NAND-2 vN-MUX, 
reconfiguration, and the enhanced MAJ-3 MUX(N, k). 

 



threshold logic gates [32]. These can be very fast, but power 
hungry, and the noise margins are small. These gates are also 
sensitive to variations. 

Because power is an important challenge, MAJ-3 gates operating 
in subthreshold are the basic building blocks to be used in this 
paper. This is because subthreshold operation is considered to 
consume less power than any other known low-power solution; 
even lower than energy recovery logic [33]. Because reduction 
of power consumption is mandatory for future scaled CMOS 
[34], subthreshold operation is very likely to play an important 
role in the design of circuits on the scaling path towards the 10 
nm node [35]. That is why, in this paper, we suggest using MAJ-
3 in subthreshold [36]–[41]. Combining such gates with low-
level redundancy (improved matching and fault-tolerance) was 
suggested in [14], by short-circuiting the outputs of three gates, 
so no voter (MAJ-3) was required. 

In Fig. 5, the second gate from left [36] is a floating gate 
structure depending on a somewhat exotic UV-postprocessing 
technique (probably not suitable for future scaled CMOS). This 
is due to the dependence on nonvolatile analog memory from 
charges depleted on the floating gates, through UV activated 
conductances [41]. 

The gate from [39], [40], is the third gate in Fig. 5. It exploits the 
transistor as a four terminal device, using the wells to control the 
threshold for changing the functionality in real time, and/or some 
automatic body biasing [42]. This is able to also implement 
NOR-3 and NAND-3 [40]. The larger relative transconductance 
in subthreshold, compared to the classical above threshold 
region, makes this possible. This is not the case for other circuits 
based on inverters with short-circuited outputs (e.g., [43]), as 
they are not intended for subthreshold, and use the transistors as 
3 terminal devices. 

4. FAULT-TOLERANT ADDERS 
The particular example we are going to use in this paper is a 32-
bit adder. Many different alternative designs are possible, 
starting from the serial ripple carry adder (RCA) and going 
towards parallel implementations [44]–[48]. It is commonly 
accepted that the slowest one is the RCA, while Kogge-Stone 
[45] (KS) is, theoretically, the fastest. Classical CMOS gates are 
almost never used when fast addition is in the picture. For fast 
addition, domino gates are the norm, with threshold logic gates 
advocated for even higher speeds [49], or for optimal mixed 
combinations with domino logic [50]. 

A 32-bit RCA and a KS implementation have very recently been 
analyzed [51] when operating in subthreshold, at 100 nm and 70 

nm, using the Berkeley Predictive Technology Model (BPTM) 
[52]). The main conclusions are that: 

• the wires are reducing the speed advantage of the KS 
over RCA from 4.5x to 2.2x; 

• the speed of the KS at a given VDD can be matched by 
RCA at a slightly larger VDD (10% to 20%); 

• at equal speeds, the RCA still maintains a clear power 
and energy advantage [51]. 

The integration of MAJ-3 MUX with an adder was discussed in 
[53]. A KS adder can be seen in Fig 6(a), and a MAJ-3 
MUX(3,3) enhanced KS adder can be seen in Fig. 6(b). The 
connectivity pattern gets complex, and the longer wires will 
contribute both to increasing the delay and the switching power. 
Based on the above factors, and on the simulation results from 
[51], we decided to focus on RCA. It is also much easier to 
integrate MAJ-3 MUX with an RCA (see Fig. 7, and compare it 
with Fig. 6(b)). 

The main block of an RCA is the well-known full adder (FA). 
Many investigations for optimizing the FA at the gate level have 
been reported [54]. The results for the many FAs investigated are 
not directly translatable to subthreshold operation. We have 
investigated an FA based on MAJ-3 gates implemented as 
“output-wired inverters” [51]. We have also experimented with 
combinations of gates for optimizing the FA. A very low power 
FA in subthreshold uses a “mirrored adder” for the MAJ-3 
(computing the carry-out), and two pass-gates (like the ones in 
[31]) for implementing the XOR-3 (computing the sum). This is 
the FA that we have used in all the RCAs in this paper (see Fig. 
7). The XOR-3 is very low power and somewhat slow, but it is 
not in the critical path. A standard CMOS implementation of an 
XOR-3 not only dissipates more than the pass-gate solution (in 
subthreshold), but is also more sensitive to variations and 
skewed inputs. 

The top drawing in Fig. 7 presents a block diagram of the 
standard RCA. The MAJ-3 MUX RCA configurations have three 
parallel FAs per stage, and can be summarized as follows: 

• use three RCAs in parallel; 

• use three MAJ-3 gates to ‘vote’ on the carry-out 
coming from the three FAs at position i; 

• use the output of each of these three MAJ-3 to drive 
the three carry-in of the three FAs at bit position i+1. 

These are mapped into the next three structures in Fig. 7, with 
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Figure 5. Different MAJ-3 gates from left to the right: [29], [36], [40], [32]. 

 



each subsequent structure being less complex than the previous. 

• The first of the three structures properly uses MAJ-3 
gates for the restorative stages (represented as circles). 
This will double the delay and increase power. 

• The complexity of the second structure is reduced, as 
the outputs of the FAs are tied together and fed as 
inputs to the restorative inverters. The MAJ-3 gate is 
now reduced to several wires and an inverter. This 
solution is faster, and will dissipate less than the 
previous one, as long as there are no faults/defects. If 
there are faults/defects, the fighting on the carry-out 
will increase the power consumption of the inverters 
which will try to restore the correct logic level. 

• The simplest structure of all eliminates the restorative 
inverters and uses the next stage of the FAs to provide 
signal restoration. The MAJ-3 has now vanished. Note 
how the outputs of each structure are shorted. This 
solution will be the fastest as long as no faults/defects. 

Shorting the outputs could result in a path from VDD to ground, 
increasing the current, while placing the gates in parallel and 
making them drive subsequent stages sequentially increases the 
signal propagation delay. These three solutions show very 
different power-delay tradoffs both when working correctly and 
when faulty. We have tested the structures for stuck-at-faults. If 
the number of stuck inputs per stage exceeds one, the condition 
constitutes immediate fatal failure. This is a simplistic scenario, 
as in practice a fault/defect could manifest itself as an analog 
value in between VDD and GND (see [15], [55]).  

The behavior of the three different MAJ-3 MUX RCAs in 0.18 
µm at 350 mV can be seen in Figs. 8–10. Numerical values are 
reported in Table I. The simulations represent the worst-case 
scenario, with one stuck-at-zero in each of the 32 stages (one 
defective RCA), while a 0xffffffff + 1 addition propagates 
a one. Hence, each restorative stage has to recover the carry. The 
traces in Fig. 8 correspond to using MAJ-3 gates in the 
restorative stages (see Fig. 7). The average current is almost 
constant (not affected by the stuck-at-zero), as the MAJ-3 gates 
in the restorative stages are drawing current anyhow. The delay 
is 32 µs with or without defects, being almost twice the 17 µs of 
one non-defective RCA (see Table I). The current traces in Fig. 
9 and Fig. 10 correspond to the solutions with short-circuited 
outputs, with and without inverters respectively. These lead to a 
fight in each restorative stage (inputs change from 000 to 011), 
increasing the current. This explains the stair step behavior of 
the current in both cases. The solution using inverters has a 
worst-case delay of 39 µs, but only 21 µs when operating 
correctly. The solution without inverters is even slower in the 
worst-case, 57 µs, but achieves 17 µs (like one non-defective 
RCA) when operating correctly. Fig. 11 presents the current for 
simulations done in 70 nm (BPTM) at 200 mV (equivalent to 
those from Fig. 9) using BPTM with default parameters. The 
results depend strongly on the size of the transistors. In our 

 

 
 

Figure 7. Classical RCA where the square blocks represent 
FAs. The three different MAJ-3 MUX RCAs: (i) using MAJ-

3 gates (circles) in between FAs; (ii) short-circuiting the 
outputs of three FAs and using three inverters (triangles) to 
recover the voltage; and (iii) short-circuiting the outputs of 
three FAs (the voltage is recovered by the next three FAs). 

 

 

 

 
 

Figure 6. (a) Kogge-Stone adder; and (b) MAJ-3 MUX(3,3) implementation of a Kogge-Stone adder [53]. 

 



simulations we have used Lp = 90 nm, Wp = 590 nm, Ln = 90 nm, 
Wn = 90 nm, and a π-model for interconnect delay. As expected, 
the stair step behavior of the current is the same like in Fig. 9. It 
becomes obvious that a designer has quite a large number of 
options for trading off power and speed when using MUX. 

The results from Figs. 9–11 show a significant current increase 
when faults occur (see step values in Table I). A current-aware 
circuit can trigger a reconfiguration process at a higher level. The 
current work is only showing that defects cause significant 
current changes we can depend on for detecting them. The 
simulation results are promising, showing that scaling from the 
0.18 µm node to the 70 nm node (BPTM) results in significantly 
shorter delays (over 30x), with small increase of currents (below 
6x), both with and without faults. 

5. CONCLUSIONS 
The paper has analyzed multiplexed adder designs working in 
subthreshold. The subthreshold operation was employed to 
address the power challenge. Still, while reducing the voltage 
supply into the subthreshold region might save the day for power 
consumption, it will adversely affect reliability. That is why, we 
proposed and investigated a MAJ-3 MUX architectural approach 
for 32-bit adders. Serial solutions seem to have an advantage 
over parallel ones, and also integrate well with MUX. The 
implementation of the MAJ-3 gates can be done in many 
different ways, with three being detailed in this paper, namely: 
classical CMOS gate, short-circuits followed by inverters, or 
only short-circuits. Simulations have shown that, in case of no 
faults/defects, the two solutions relying on short-circuiting the 
outputs are faster than a solution using MAJ-3 gates. The delay 
increases when faults/defects start appearing, but the circuit is 

still able to function correctly, showing a gradual degradation of 
its speed and power performances. The defects also significantly 
increase current (power). This might be seen as a disadvantage, 
but could be used as a way for automatically detecting the 
defects. A current-aware circuit can trigger reconfiguration at a 
higher level, if currents get above a certain threshold. Once the 
reconfiguration has been achieved, the defective circuit/block 
can be swapped with a non-defective one, and then shut down. 
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Figure 10. Current (worst case) for MAJ-3 MUX RCAs with
short-circuited outputs (in 0.18 µm). 

 
 

Figure 8. Current (worst case) for MAJ-3 MUX RCAs using 
MAJ-3 gates (in 0.18 µm). 

 

 

Figure 9. Current (worst case) for MAJ-3 MUX RCAs when 
short-circuiting the outputs and using inverters (in 0.18 µm). 
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Figure 11. Current (worst case) for MAJ-3 MUX RCAs 
when short-circuiting the outputs and using inverters (like 

Fig. 9, but in 70 nm BPTM). 



[8] J. Han, and P. Jonker, “A defect- and fault-tolerant architecture 
for nanocomputers,” Nanotechnology, 14 (Feb. 2003), 224–
230. 

[9] A. S. Sadek, K. Nikolić, and M. Forshaw, “Parallel information 
and computation with restitution for noise-tolerant nanoscale 
logic networks,” Nanotechnology, 15 (Jan. 2004), 192–210. 

[10] J. von Neumann, “Probabilistic logics and the synthesis of 
reliable organisms from unreliable components,” in C. E. 
Shannon, and J. McCarthy (Eds.), Automata Studies, Princeton, 
NJ: Princeton Univ. Press, 1956, 43–98. 

[11] J. R. Heath, P. J. Keukes, G. S. Snider, and R. S. Williams, “A 
defect-tolerant computer architecture: Opportunities for 
nanotechnology,” Science, 280 (Jun. 12, 1998), 1716–1721. 

[12] S. Tatapudi, and V. Beiu, “Split-precharge differential noise 
immune threshold logic gate (SPD-NTL),” in J. Mira, and J. R. 
Álvarez (Eds.): Artificial Neural Nets Problem Solving 
Methods, Springer, LNCS 2687, Jun. 2003, 49–56. 

[13] M. Sulieman, and V. Beiu, “Design and analysis of SET 
circuits: Using MATLAB and SIMON,” Proc. IEEE-
NANO’04, Munich, Germany, Aug. 2004, 618–621. 

[14] S. Aunet, and M. Hartmann “Real-time reconfigurable 
threshold elements and some applications to neural hardware,” 
Proc. Intl. Conf. Evolvable Sys. ICES’03, Trondheim, Norway, 
Springer LNCS 2606, Mar. 2003, 365–376. 

[15] A. Schmid, and Y. Leblebici, “Robust circuit and system 
design methodologies for nanometer-scale devices and single-
electron transistors,” Proc. IEEE-NANO’03, San Francisco, 
CA, Aug. 2003, vol. 2, 516–519. 

[16] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, 
“Fault tolerance techniques for wireless ad hoc sensor 

networks,” Proc. IEEE Sensors, Orlando, FL, Jun. 2002, 1491–
1496. 

[17] A. J. KleinOsowski, and D. J. Lilja, “The NanoBox project: 
Exploring fabrics of self-correcting logic blocks for high defect 
rate molecular device technologies,” Proc. IEEE Annual Symp. 
VLSI ISVLSI’04, Lafayette, LA, Feb. 2004, 19–24. 

[18] R. Reischuk, and B. Schmeltz, “Area efficient methods to 
increase the reliability of combinatorial circuits,” Proc. Intl. 
Symp. Th. Aspects Comp. Sci. STACS’89, Paderbon, Germany, 
Feb. 1989, Springer, LNCS 349, 314–326. Also in B. Monien, 
and T. Ottmann (Eds.): Data Structures and Efficient 
Algorithms, Springer, LNCS 594, 1992, 363–389. 

[19] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla, 
“Evaluating reliability of defect tolerant architecture for 
nanotechnology using probabilistic model checking,” Proc. 
Intl. Conf. VLSI Design VLSID’04, Mumbai, India, Jan. 2004, 
907–912. 

[20] S. Roy, V. Beiu, and M. Sulieman, “Reliability analysis of 
some nano architectures,” presented at the Special Workshop 
on Neural Inspired Architectures for Nanoelectronics, 
NIPS’03, Whistler, Canada, Dec. 2003. Available: 
http://www.eecs.wsu.edu/~vbeiu/workshop_nips03/Presentatio
ns/S_Roy.pdf 

[21] S. Roy, and V. Beiu, “Multiplexing schemes for cost effective 
fault tolerance,” Proc. IEEE-NANO’04, Munich, Germany, 
Aug. 2004, 589–592. 

[22] W. S. Evans, “Information Theory and Noisy Computation,” 
Ph.D. dissertation, Univ. of California at Berkeley, ICSI Tech. 
Rep. TR-94-57, Berkeley, CA, USA, Nov. 1994. Available: 
http://www.cs.ubc.ca/~will/papers/thesis.pdf 

Table 1. Performances  of  Different  MAJ-3  MUX  (redundant)  Ripple  Carry  Adders 

Circuit and Technology Node Delay (µs) Current (nA) Power (nW) PDP (fJ) PDP/stage (fJ) 
       

0.18 µm at 350 mV       

One RCA (no defects)  17.140  11.68 4.09 69.90 2.18 
3 RCAs short-wired (no defects) 17.230  36.15 12.65 218.00 6.81 

Max 1353.00 473.60 26779.00 836.90 
Min 784.00    

3 RCAs short-wired 
(one RCA stuck-at-zero) 

56.550 
Step 17.78    

3 RCAs with inverters (no defects) 21.260  35.07 12.27 261.00 8.35 
Max 1337.00 467.950 18152.00 581.00 
Min 655.00    

3 RCAs with inverters 
(one RCA stuck-at-zero) 

38.790 
Step 21.31    

3 RCAs with MAJ-3 (no defects) 32.150  38.39 13.44 432.00 13.50 
3 RCAs with MAJ-3 
(one RCA stuck-at-zero) 

32.200 
 

34.93 12.23 393.70 12.30 
       

70 nm (BPTM) at 200 mV       

One RCA (no defects) 0.543  362.00 72.40 39.31 1.23 
3 RCAs with inverters (no defects) 0.652  1053.00 210.60 137.31 4.29 

Max 7751.00 1550.20 1664.91 52.03 
Min 3737.00    

3 RCAs with inverters 
(one RCA stuck-at-zero) 

1.074 
Step 125.44    

 



[23] W. S. Evans, and L. J. Schulman, “On the maximum tolerable 
noise of k-input gates for reliable computations by formulas,” 
IEEE Trans. Inform. Theory, 49 (Nov. 2003), 3094–3098. 

[24] Y. Qi, J. Gao, and J. A. B. Fortes, “Probabilistic computation: 
A general framework for fault-tolerant nanoelectronic 
systems,” Tech. Rep. TR-ACIS-03-002, ECE Dept., University 
of Florida, Gainesville, FL, USA, Nov. 28, 2003. Available: 
http://www.acis.ufl.edu/techreports/acis03002.pdf 

[25] R. Reischuk, “Can large fanin circuits perform reliable 
computations in the presence of faults?,” Theoretical Comp. 
Sci., 240 (Jun. 2000), 319–335. 

[26] H. L. Hughes, and J. M. Benedetto, “Radiation effects and 
hardening of MOS technology: Devices and circuits,” IEEE 
Trans. Nuclear Sci., 50 (Jun. 2003), 500–521. 

[27] M.-F. Lan, A. Tammineedi, and R. Geiger, “A new current 
mirror layout technique for improved matching characteristics,” 
Proc. Midwest Symp. Circ. and Sys. MWSCAS’99, Las Cruces, 
NM, Aug. 1999, vol. 2, 1126–1129. 

[28] M.-F. Lan, and R. Geiger, “Gradient sensitivity reduction in 
current mirrors with non-rectangular layout structures,” Proc. 
Intl. Symp. Circ. and Sys. ISCAS’00, Geneva, Switzerland, 
May 2000, vol. 1, 687–690. 

[29] D. Hampel, K. J. Prost, and N. R. Scheinberg, “Threshold logic 
using complementary MOS device,” U.S. Patent 3 900 742, 
Jun. 24, 1974. 

[30] J. Nyathi, V. Beiu, S. Tatapudi, and D. Betwoski, “A charge 
recycling differential noise-immune perceptron,” Proc. Intl. 
Joint Conf. Neural Networks IJCNN’04, Budapest, Hungary, 
Jul. 2004, 1995–2000. 

[31] B. H. Calhoun, A. Wand, and A. Chandrakasan, “Device sizing 
for minimum energy operation in subthreshold circuits,” Proc. 
Custom IC Conf. CICC’04, Orlando, FL, Oct. 2004, 95–98. 

[32] V. Beiu, J. M. Quintana, and M. J. Avedillo, “VLSI 
implementation of threshold logic: A comprehensive survey,” 
IEEE Trans. Neural Networks, 14 (Sep. 2003), 1217–1243. 

[33] J. Rabaey, M. Pedram, and P. Landman, “Low Power Design 
Methodologies,” Kluwer, Boston, 1995. 

[34] P. P. Gelsinger, “Microprocessors for the new millennium: 
Challenges, opportunities, and new frontiers,” Proc. Intl. Symp. 
Circ. and Sys. ISCAS’01, Sydney, Australia, May 2001, 22–25. 

[35] E. J. Nowak, “Maintaining the benefits of CMOS scaling when 
scaling bogs down,” IBM J. Res. & Dev., 46 (Mar.-May 2002), 
169–180. 

[36] S. Aunet, Y. Berg, O. Tjore, Ø. Næss, and T. Sæther, “Four-
MOSFET floating-gate UV-programmable elements for 
multifunction binary logic,” Proc. World Multiconf. Sys. 
Cyber. & Informatics, Orlando, FL, Jul. 2001, vol. 3, 141–144. 

[37] T. Ytterdal, and S. Aunet, “Compact low-voltage self-
calibrating digital floating-gate CMOS logic circuits,” Proc. 
Intl. Symp. Circ. and Sys. ISCAS’02, Scottsdale, AZ, May 
2002, vol. 5, 393–396. 

[38] S. Aunet, T. Ytterdal, Y. Berg, and T. Sæther, “Multiple-input 
floating-gate linear threshold element tuned by well potential 
adjustment,” Proc. Norchip Conf., Copenhagen, Denmark, 
Nov. 2002, 220–225. 

[39] Leiv Eiriksson Nyskaping, Trondheim, Snorre Aunet, 
Norwegian patent application no. 20035537, Dec. 2003 

[40] S. Aunet, B. Oelmann, S. Abdalla, and Y. Berg 
“Reconfigurable subthreshold CMOS perceptron,” Proc. Intl. 
Joint Conf. Neural Networks IJCNN’04, Budapest, Hungary, 
Jul. 2004, 1983–1988. 

[41] T. S. Lande, D. T. Wisland, T. Sæther, and Y. Berg “FLOGIC 
– Floating-gate logic for low-power operation,” Proc. Intl. 
Conf. Circ. Electr. Sys. ICCES’96, Rhodos, Greece, Oct. 1996, 
vol. 2, 1041–1044. 

[42] T. Kobayashi, and T. Sakurai, “Self-adjusting threshold-voltage 
scheme (SATS) for low-voltage high-speed operation,” Proc. 
Custom Integr. Circ. Conf. CICC’94, San Diego, CA, May 
1994, 271–274. 

[43] J. B. Lerch, “Threshold gate circuits employing field-effect 
transistors,” U.S. Patent 3 715 603, Feb. 6, 1973. 

[44] A. Weinberger, and J. L. Smith, “A logic for high-speed 
addition,” Natl. Bur. Stand. Circ. 591, 1958, 3–12. 

[45] P. M. Kogge, and H. Stone, “A parallel algorithm for the 
efficient solution of a general class of recurrence equations,” 
IEEE Trans. Comp., 22 (Aug. 1973), 786–793. 

[46] R. E. Ladner, and M. J. Fischer, “Parallel prefix 
computations,” J. ACM, 27 (Oct. 1980), 831–838. 

[47] R. P. Brent, and H. T. Kung, “A regular layout for parallel 
adders,” IEEE Trans. Comp., 31 (Mar. 1982), 260–264. 

[48] T. Han, and D. A. Carlson, “Fast area-efficient VLSI adders,” 
Proc. Symp. Comp. Arithmetic ARITH’87, Como, Italy, May 
1987, 49–56. 

[49] V. Beiu, “A survey of perceptron circuit complexity results,” 
Proc. Intl. Joint Conf. Neural Networks IJCNN’03, Portland, 
OR, Jul. 2003, vol. 2, 989–994. 

[50] P. Celinski, S. Al-Sarawi, D. Abbott, S. D. Cotofana, and S. 
Vassiliadis, “Logical effort based design exploration of 64-bit 
adders using a mixed dynamic-CMOS/threshold-logic 
approach,” Proc. Annual Symp. VLSI ISVLSI’04, Lafayette, 
LA, Feb. 2004, 127–132. 

[51] V. Beiu, A. Djupdal, and S. Aunet “Ultra low power neural 
inspired addition: When serial might outperform parallel 
architectures,” Intl. Work-conf. Artif. Neural Networks 
IWANN’05, Barcelona, Spain, Jun. 2005, in press. 

[52] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu, “New 
paradigm of predictive MOSFET and interconnect modeling for 
early circuit simulations,” Proc. Custom IC Conf. CICC’00, 
Orlando, FL, May 2000, 201–204. 

[53] V. Beiu, “A novel highly reliable low-power nano architecture: 
When von Neumann augments Kolmogorov,” Proc. Intl. Conf. 
App.-specific Sys., Arch. and Processors ASAP’04, Galveston, 
TX, Sep. 2004, 167–177. 

[54] A. M. Shams, T. K. Darwish, and M. A. Bayoumi, 
“Performance analysis of low-power 1-bit CMOS full adder 
cells,” IEEE Trans. VLSI Sys., 10 (Feb. 2002), 20–29. 

[55] S. Aunet, and V. Beiu, “Ultra low power fault tolerant neural 
inspired CMOS logic,” Intl. Joint Conf. Neural Networks 
IJCNN’05, Montréal, Canada, Jul.-Aug. 2005, in press. 

 


