
The Vanishing Majority Gate
Trading Power and Speed for Reliability

Valeriu Beiu
School of EE & CS

Washington State University
Pullman, WA 99164-2752, USA

vbeiu@eecs.wsu.edu

Snorre Aunet

Department of Informatics
University of Oslo

Norway

sa@ifi.uio.no

Ray Robert Rydberg III

School of EE & CS
Washington State University

Pullman, WA 99164-2752, USA

rrydberg@eecs.wsu.edu

Asbjørn Djupdal
Department of Computer and Information Science
Norwegian University of Science and Technology

Norway

asbjoern@djupdal.org

ABSTRACT
In this paper we are going to explore low-level implementation
issues for fault-tolerant adders based on multiplexing using
majority gates (MAJ).

We shall analyze the particular case of a 32-bit ripple carry adder
(RCA), as well as different redundant designs using MAJ-3
(MAJ of fan-in 3) multiplexed RCAs: (i) with classical MAJ-3
gates in the restorative stages; (ii) with inverters driven by short-
circuited outputs at each restorative stage; and finally, (iii) only
with short-circuited outputs at each restorative stage. From one
solution to the next, the restorative MAJ-3 gates get simpler and
simpler. These simplifications translate into different speeds and
power consumptions; challenging aspects of future
nanoelectronics. All these circuits have been designed and
simulated in subthreshold. The speed and power will be reported
and compared for designs in 0.18 µm as well as 70 nm (using the
Berkeley Predictive Technology Model). The results reveal
interesting power-speed-reliability tradeoffs.

In two of these designs, depending on the way the MAJ-3
function is implemented, defects translate into increased power,
and suggest a (simple) way of detecting them. A detection circuit
can trigger reconfiguration at a higher level, leading to a
seamless transition from a fault-tolerant circuit to a defect-
tolerant system. The main advantage of such an approach would
be that reconfiguration could be done on-line, i.e., while the
circuit is still operating correctly.

Keywords
Architecture, defect/fault-tolerance, majority logic, multiplexing,
power.

1. INTRODUCTION
Scaling of CMOS into the nanometer range raises many
challenges [1]. The development of novel nanodevices leads to
new challenges, including both the increasing power
consumption, and the need for architectures that reduce the

Jabulani Nyathi
School of EE & CS

Washington State University
Pullman, WA 99164-2752, USA

jabu@eecs.wsu.edu

uncertainty inherent to (nano)computations [2]–[4]. That is why,
fault- and defect-tolerant architectures have recently received
revived attention in the nanotechnology community [5]–[9]. One
well-known approach for developing fault-tolerant architectures
in the face of uncertainties (both defects and transient faults) is
to incorporate spatial and/or temporal redundancy. Among the
redundant design schemes, we should mention here: modular
redundancy, cascaded modular redundancy, multiplexing (MUX,
including von Neumann multiplexing [10] and parallel
restitution PAR-REST [9]), as well as reconfigurability [5], [8],
[11].

Reliable operation of a circuit can be achieved using redundancy
at many different levels: at the device level [12], [13]; at the gate
level [14], [15]; at the block level [16]; in time; and in
communication (through encoding, e.g., [17]) (see also [3]–[9]).
We note here that all of these have in common improved
reliability, traded for increased chip area and higher
connectivity. These lead to higher power consumption, and can
also slow down the computations.

The most common way of quantifying redundancy is to use a
redundancy factor R, which indicates the multiplicative increase
in circuit size (i.e., number of gates) required to attain fault-free
operation, or equivalently, the ratio of the size of the fault/defect-
tolerant circuit to the size required in case of no faults. Cost-
effectiveness constraints dictate that redundancy factors must be
small, or better, very small. Still, the increase in circuit area
rather than increase in size is a more significant measure of
redundancy, as suggested in [18] (where the authors also show
how encoding in combination with replication can be used to
minimize circuit area).

In this paper, the focus will be on the gate and block levels.
Section II provides a review of multiplexing (MUX) schemes,
starting from the early work of von Neumann, and detailing
recent variations and enhancements. A comparison of MUX with
other techniques using redundancy shows significant advantages
for MUX. The use of MAJ gates in MUX improves over MUX
schemes based on NAND gates. That is why, in Section III we

analyze different implementations for MAJ. Beside reliability,
power has already become an important issue, hence we are
going to discuss MAJ-3 gates targeted for subthreshold
operation. Section IV will put all of these together, and present
different configurations of a MAJ-3 MUX 32-bit adder. Only
serial addition will be considered, as it outperforms parallel
addition when operated in subthreshold [51]. Simulation results
will be presented and discussed before concluding.

2. ON MULTIPLEXING
In [10], von Neumann introduced the multiplexing redundancy
algorithm MUX as a plausible representation for reliable (neural-
inspired) computation. The MUX algorithm aims to improve the
reliability of a sequence of computations. This ‘multiplexing’ of
each computation serves to contain error propagation, by
selecting the more-likely result at each stage. MUX was
developed for arbitrary gates, including MAJ and NAND gates.
Fig. 1 shows the executive stage followed by two restorative
stages of a NAND-2 MUX. However, a detailed reliability
analysis was performed for two-input NAND (NAND-2) gates
only, assuming independent gate failures and very large
redundancy factors. The performance of NAND-2 MUX was
compared with the performance of other fault tolerance
techniques in [3]–[7]. In [7], NAND-2 MUX was analyzed at
small to moderate redundancy factors of 30, 300, and 3000.
NAND-2 MUX has been analyzed using a CAD tool in [19].

The PAR-REST scheme [9] is of particular interest. The authors
distinguish PAR-REST from NAND-2 MUX based on the fact
that the computations are not collapsed after each layer of the
circuit (see [9] for details) and that restorative stages are only
used periodically. They show that PAR-REST can significantly
improve upon NAND-2 MUX for small to moderate R. A similar
approach was taken in [20], [21], where MAJ-3 gates were used
instead of NAND-2.

The issue of which gate to use is debatable. MUX can be applied
to any logic gate, but for each new gate, and even for another
fan-in value, the analysis must be redone. Following is a list of
pros and cons.

• NAND MUX requires two restoration stages, while
MAJ requires only one. This leads to less area, shorter
delay, less power, and less energy. Still, this is not as
clear as it seems, as one NAND restoration could, in
principle, be eliminated.

• MAJ has an error threshold higher NAND (see Fig. 2).
The error threshold for MAJ-k gates (for odd k) is the
one determined in [22] and [23], while the error
threshold for NAND-k gates was recently proven in
[24]. The figure also suggests that MAJ gates of large
fan-ins are (theoretically) better for improving
reliability (see also [25]).

• Finally, MAJ-3 MUX can achieve accurate
computations for gate failure probabilities qMAJ-3
< 0.0197 (see [21]). This outperforms the NAND-2
gate failure probabilities qNAND-2 < 0.0107 (see [9] for
a relevant discussion).

The idea of using MAJ was presented in the original article of
von Neumann [10]. Still, exact evaluation of the probability of
failure at very small redundancy factors was analyzed and proven
only recently [20], [21].

A single MAJ-3 MUX logic computation is presented in Fig.
3(a). The MUX computation comprises an executive stage and a
restorative stage. The executive stage repeats the desired logic
computation a total of N times, operating on N different sets of
inputs obtained from the previous computation. The restorative
stage triplicates and randomly orders (see randomizer in Fig.
3(b)) the outputs from the executive stage, and then chooses the
majority of each randomly-chosen set of three signals using a set
of N MAJ-3 gates, to generate the N final outputs. This
restoration is central to the global performance of the MUX
scheme. The purpose of the restorative stage is to reduce error
propagation from a logic computation’s input to its output, by

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fan−in of One Gate

E
rr

o
r

 T
h

re
sh

o
ld

 V
al

u
e

NAND

MAJ

Figure 2. The error thresholds for NAND and MAJ gates
with respect to their fan-in.

R
an

dom
izer

R
an

dom
izer

Execution Restoration # 1 Restoration # 2

I1

I2

1

2

N

1

2

N

•

•

•

•

•

•

1

2

N

•

•

•

R
an

dom
izer

R
an

dom
izer

ExecutionExecution Restoration # 1Restoration # 1 Restoration # 2Restoration # 2

I1

I2

1

2

N

1

2

N

•

•

•

•

•

•

1

2

N

•

•

•

Figure 1. NAND-2 von Neumann multiplexing.

(a) (b)

Figure 3. (a) Generic MAJ-3 MUX, and (b) the N = 5 case.

selecting the more common outputs from the computation. The
restorative stage is only effective when the probabilities of error
in the inputs are sufficiently large. In fact, for small input error
probabilities, the chance of error introduced by the gates in the
restorative stage might outweigh the advantage of having the
restorative stage. Thus, if the input error probabilities for a
particular logic computation are small enough, we can
simultaneously improve the output error probability and
economize (reduce the redundancy factor R) of any MUX design
by eliminating the restorative stage.

If one is seeking the best-performing architecture for a particular
redundancy factor R, it has been shown that the standard MUX
algorithm can be improved on by applying the restorative stage
on only some computations, while simultaneously increasing the
bundle size N. This idea was used in [21] to improve MAJ-3
MUX. The same principle can be applied when using any other
type of gate or combinatorial logic block. Let us consider
architectures in which the logical depths of all inputs to a given
computation are the same (in general this need not be the case).
The enhanced MAJ-3 MUX(N, k) architecture is one in which an
executive stage with bundle size N is used for all computations,
and a restorative stage is applied only on every kth stage (i.e., for
computations with logical depth k, 2k, … — while in general,
the restorative stages could be distributed unevenly). The
redundancy factor introduced by a MAJ-3 MUX(N, k)
architecture is R = N + N / k. By placing the restorative stage
only every kth stage, the bundle size N can be increased to
N+ = [2k/(k+1)]×N for the same redundancy factor R. Obviously,
this not only maximizes reliability, but also reduces delay, area,
and power. A crude comparison of R-modular redundancy
(RMR), NAND-2 MUX, reconfiguration, and the enhanced
MAJ-3 MUX can be seen in Fig. 4.

Another scheme, which takes advantage of periodic restoration
to improve performance, is PAR-REST. A comparison between
MAJ-3 MUX and PAR-REST is the most fair comparison of the
reliability of MAJ-3 and NAND-2 architectures. The article [9]
considers reliability over a duration of time (i.e., multiple clock
cycles), and reports maximum failure probabilities when 90%
reliability over ten years of processing is demanded. We have
compared MAJ-3 MUX and PAR-REST using this reliability
demand and identical chip specifications (as in [9]). At the
smallest analyzed redundancy for PAR-REST (R = 48) MAJ-3
MUX improves by a factor of 1.5x (2.3×10–4 versus about
1.5×10–4). At R = 100 (the largest redundancy we have simulated
for MAJ-3 MUX) the improvement factor is 4.25x (1.7×10–3
versus about 4×10–4).

These fresh results and enhancements on MUX show that the
technique is able to start competing with reconfiguration (which
is not able to deal with faults) for small redundancy factors, if the
reconfiguration is performed on N > 103 logic blocks of 500
transistors each (see [5] for details).

Novel redundancy techniques that combine device-level ([12],
[13]) and gate-level design ideas have also been presented [14].
In [15], the authors propose a redundant design approach that
creates a rescaled weighted average of the redundant blocks’
outputs. This results in a multiple-valued logic representation of
the function, and provides an effective means of absorbing faults.

The authors show that the new design technique improves the
immunity to permanent and transient faults occurring at the
transistor level, and works even for R = 2. The paper suggests
that dynamically adjustable threshold levels may further enhance
this method. The solution presented in [14] precedes [15], and
also has the advantage of lower power consumption for the case
of fault-free operation. Other low-level approaches which we
should mention here belong to the larger class of rad-hard by
design [26], and high matching techniques used in analog
circuits [27], [28] (recently used for enhancing the reliability of
CMOS TLGs [12], and capacitive SET [13]).

Very recently [17], examples of hardware architectures that
incorporate one or multiple redundancy schemes (triple modular
redundancy together with encoding) were tested using
VHDL/Spice/Monte Carlo simulations.

3. MAJORITY GATES
Based on the discussion of the previous section, MAJ MUX
schemes seem to have an edge over NAND MUX ones. It then
becomes a question of how to implement the MAJ function.
Before going further, we mention that MAJ functions can always
be replaced by minority functions if the inputs are inverted and
vice versa. That is why we are going to refer to these
implementations as MAJ gates, even if sometimes the function
they implement is the minority function.

MAJ gates can be implemented in many different ways. A
standard CMOS implementation is the well-known “mirrored
adder” [29] (see Fig. 5). Domino logic gates could be used to
improve the speed, but raise clock distribution problems, higher
power consumption, and reduced noise margins (sensitivity to
variations and clock skew). Differential logic could be another
alternative, but with scaling, the leakage currents are going to be
higher (as compared with the other logic styles) [30]. Using pass
transistors/gates as a multiplexor, followed by an inverter (as
buffer), is a very simple solution. This type of gates has been
recently shown to work reliably even in subthreshold [31]. They
are low power, but also kind of slow. Pseudo-nMOS (or its
variations) have long been known and used for implementing

NC=106

Figure 4. Comparison of RMR, NAND-2 vN-MUX,
reconfiguration, and the enhanced MAJ-3 MUX(N, k).

threshold logic gates [32]. These can be very fast, but power
hungry, and the noise margins are small. These gates are also
sensitive to variations.

Because power is an important challenge, MAJ-3 gates operating
in subthreshold are the basic building blocks to be used in this
paper. This is because subthreshold operation is considered to
consume less power than any other known low-power solution;
even lower than energy recovery logic [33]. Because reduction
of power consumption is mandatory for future scaled CMOS
[34], subthreshold operation is very likely to play an important
role in the design of circuits on the scaling path towards the 10
nm node [35]. That is why, in this paper, we suggest using MAJ-
3 in subthreshold [36]–[41]. Combining such gates with low-
level redundancy (improved matching and fault-tolerance) was
suggested in [14], by short-circuiting the outputs of three gates,
so no voter (MAJ-3) was required.

In Fig. 5, the second gate from left [36] is a floating gate
structure depending on a somewhat exotic UV-postprocessing
technique (probably not suitable for future scaled CMOS). This
is due to the dependence on nonvolatile analog memory from
charges depleted on the floating gates, through UV activated
conductances [41].

The gate from [39], [40], is the third gate in Fig. 5. It exploits the
transistor as a four terminal device, using the wells to control the
threshold for changing the functionality in real time, and/or some
automatic body biasing [42]. This is able to also implement
NOR-3 and NAND-3 [40]. The larger relative transconductance
in subthreshold, compared to the classical above threshold
region, makes this possible. This is not the case for other circuits
based on inverters with short-circuited outputs (e.g., [43]), as
they are not intended for subthreshold, and use the transistors as
3 terminal devices.

4. FAULT-TOLERANT ADDERS
The particular example we are going to use in this paper is a 32-
bit adder. Many different alternative designs are possible,
starting from the serial ripple carry adder (RCA) and going
towards parallel implementations [44]–[48]. It is commonly
accepted that the slowest one is the RCA, while Kogge-Stone
[45] (KS) is, theoretically, the fastest. Classical CMOS gates are
almost never used when fast addition is in the picture. For fast
addition, domino gates are the norm, with threshold logic gates
advocated for even higher speeds [49], or for optimal mixed
combinations with domino logic [50].

A 32-bit RCA and a KS implementation have very recently been
analyzed [51] when operating in subthreshold, at 100 nm and 70

nm, using the Berkeley Predictive Technology Model (BPTM)
[52]). The main conclusions are that:

• the wires are reducing the speed advantage of the KS
over RCA from 4.5x to 2.2x;

• the speed of the KS at a given VDD can be matched by
RCA at a slightly larger VDD (10% to 20%);

• at equal speeds, the RCA still maintains a clear power
and energy advantage [51].

The integration of MAJ-3 MUX with an adder was discussed in
[53]. A KS adder can be seen in Fig 6(a), and a MAJ-3
MUX(3,3) enhanced KS adder can be seen in Fig. 6(b). The
connectivity pattern gets complex, and the longer wires will
contribute both to increasing the delay and the switching power.
Based on the above factors, and on the simulation results from
[51], we decided to focus on RCA. It is also much easier to
integrate MAJ-3 MUX with an RCA (see Fig. 7, and compare it
with Fig. 6(b)).

The main block of an RCA is the well-known full adder (FA).
Many investigations for optimizing the FA at the gate level have
been reported [54]. The results for the many FAs investigated are
not directly translatable to subthreshold operation. We have
investigated an FA based on MAJ-3 gates implemented as
“output-wired inverters” [51]. We have also experimented with
combinations of gates for optimizing the FA. A very low power
FA in subthreshold uses a “mirrored adder” for the MAJ-3
(computing the carry-out), and two pass-gates (like the ones in
[31]) for implementing the XOR-3 (computing the sum). This is
the FA that we have used in all the RCAs in this paper (see Fig.
7). The XOR-3 is very low power and somewhat slow, but it is
not in the critical path. A standard CMOS implementation of an
XOR-3 not only dissipates more than the pass-gate solution (in
subthreshold), but is also more sensitive to variations and
skewed inputs.

The top drawing in Fig. 7 presents a block diagram of the
standard RCA. The MAJ-3 MUX RCA configurations have three
parallel FAs per stage, and can be summarized as follows:

• use three RCAs in parallel;

• use three MAJ-3 gates to ‘vote’ on the carry-out
coming from the three FAs at position i;

• use the output of each of these three MAJ-3 to drive
the three carry-in of the three FAs at bit position i+1.

These are mapped into the next three structures in Fig. 7, with

Vdd

Gnd

P1

N1 N2 N3

X Y Z

Ps

Ns

X

Y

Z

Vdd

Gnd

P1 P2

P3

P4

P5

N1

N2 N3

N4

N5

Out

X

Y

Z
OUT

Gnd

Vdd

Ps

Ns

P1 P2 P3

N1 N2 N3

Vdd

P1

N1

Ps

Ns

X

Y

Z

Figure 5. Different MAJ-3 gates from left to the right: [29], [36], [40], [32].

each subsequent structure being less complex than the previous.

• The first of the three structures properly uses MAJ-3
gates for the restorative stages (represented as circles).
This will double the delay and increase power.

• The complexity of the second structure is reduced, as
the outputs of the FAs are tied together and fed as
inputs to the restorative inverters. The MAJ-3 gate is
now reduced to several wires and an inverter. This
solution is faster, and will dissipate less than the
previous one, as long as there are no faults/defects. If
there are faults/defects, the fighting on the carry-out
will increase the power consumption of the inverters
which will try to restore the correct logic level.

• The simplest structure of all eliminates the restorative
inverters and uses the next stage of the FAs to provide
signal restoration. The MAJ-3 has now vanished. Note
how the outputs of each structure are shorted. This
solution will be the fastest as long as no faults/defects.

Shorting the outputs could result in a path from VDD to ground,
increasing the current, while placing the gates in parallel and
making them drive subsequent stages sequentially increases the
signal propagation delay. These three solutions show very
different power-delay tradoffs both when working correctly and
when faulty. We have tested the structures for stuck-at-faults. If
the number of stuck inputs per stage exceeds one, the condition
constitutes immediate fatal failure. This is a simplistic scenario,
as in practice a fault/defect could manifest itself as an analog
value in between VDD and GND (see [15], [55]).

The behavior of the three different MAJ-3 MUX RCAs in 0.18
µm at 350 mV can be seen in Figs. 8–10. Numerical values are
reported in Table I. The simulations represent the worst-case
scenario, with one stuck-at-zero in each of the 32 stages (one
defective RCA), while a 0xffffffff + 1 addition propagates
a one. Hence, each restorative stage has to recover the carry. The
traces in Fig. 8 correspond to using MAJ-3 gates in the
restorative stages (see Fig. 7). The average current is almost
constant (not affected by the stuck-at-zero), as the MAJ-3 gates
in the restorative stages are drawing current anyhow. The delay
is 32 µs with or without defects, being almost twice the 17 µs of
one non-defective RCA (see Table I). The current traces in Fig.
9 and Fig. 10 correspond to the solutions with short-circuited
outputs, with and without inverters respectively. These lead to a
fight in each restorative stage (inputs change from 000 to 011),
increasing the current. This explains the stair step behavior of
the current in both cases. The solution using inverters has a
worst-case delay of 39 µs, but only 21 µs when operating
correctly. The solution without inverters is even slower in the
worst-case, 57 µs, but achieves 17 µs (like one non-defective
RCA) when operating correctly. Fig. 11 presents the current for
simulations done in 70 nm (BPTM) at 200 mV (equivalent to
those from Fig. 9) using BPTM with default parameters. The
results depend strongly on the size of the transistors. In our

Figure 7. Classical RCA where the square blocks represent
FAs. The three different MAJ-3 MUX RCAs: (i) using MAJ-

3 gates (circles) in between FAs; (ii) short-circuiting the
outputs of three FAs and using three inverters (triangles) to
recover the voltage; and (iii) short-circuiting the outputs of
three FAs (the voltage is recovered by the next three FAs).

Figure 6. (a) Kogge-Stone adder; and (b) MAJ-3 MUX(3,3) implementation of a Kogge-Stone adder [53].

simulations we have used Lp = 90 nm, Wp = 590 nm, Ln = 90 nm,
Wn = 90 nm, and a π-model for interconnect delay. As expected,
the stair step behavior of the current is the same like in Fig. 9. It
becomes obvious that a designer has quite a large number of
options for trading off power and speed when using MUX.

The results from Figs. 9–11 show a significant current increase
when faults occur (see step values in Table I). A current-aware
circuit can trigger a reconfiguration process at a higher level. The
current work is only showing that defects cause significant
current changes we can depend on for detecting them. The
simulation results are promising, showing that scaling from the
0.18 µm node to the 70 nm node (BPTM) results in significantly
shorter delays (over 30x), with small increase of currents (below
6x), both with and without faults.

5. CONCLUSIONS
The paper has analyzed multiplexed adder designs working in
subthreshold. The subthreshold operation was employed to
address the power challenge. Still, while reducing the voltage
supply into the subthreshold region might save the day for power
consumption, it will adversely affect reliability. That is why, we
proposed and investigated a MAJ-3 MUX architectural approach
for 32-bit adders. Serial solutions seem to have an advantage
over parallel ones, and also integrate well with MUX. The
implementation of the MAJ-3 gates can be done in many
different ways, with three being detailed in this paper, namely:
classical CMOS gate, short-circuits followed by inverters, or
only short-circuits. Simulations have shown that, in case of no
faults/defects, the two solutions relying on short-circuiting the
outputs are faster than a solution using MAJ-3 gates. The delay
increases when faults/defects start appearing, but the circuit is

still able to function correctly, showing a gradual degradation of
its speed and power performances. The defects also significantly
increase current (power). This might be seen as a disadvantage,
but could be used as a way for automatically detecting the
defects. A current-aware circuit can trigger reconfiguration at a
higher level, if currents get above a certain threshold. Once the
reconfiguration has been achieved, the defective circuit/block
can be swapped with a non-defective one, and then shut down.

6. REFERENCES
[1] International Technology Roadmap for Semiconductors, ITRS,

2004. Available: http://public.itrs.net/

[2] C. Constantinescu, “Trends and challenges in VLSI circuit
reliability,” IEEE Micro, 23 (Jul.-Aug. 2003), 14–19.

[3] P. Sivakumar, M. Kistler, S. W. Keckler, D. Burger, and L.
Alvisi, “Modeling the effect of technology trends on soft error
rate of combinatorial logic,” Proc. Intl. Conf. Dependable Sys.
and Networks DSN’02, Washington, DC, Jun. 2002, 389–398.

[4] P. Sivakumar, S. W. Keckler, C. R. Moore, and D. Burger,
“Exploiting microarchitectural redundancy for defect
tolerance,” Proc. Intl. Conf. Comp. Design ICCD’03, San Jose,
CA, Oct. 2003, 481–488.

[5] M. Forshaw, K. Nikolić, and A. S. Sadek, “ANSWERS:
Autonomous Nanoelectronic Systems With Extended
Replication and Signaling,” MEL-ARI #28667, 3rd Year
Annual Report, 2001, 1–32. Available:
http://ipga.phys.ucl.ac.uk/research/answers/reports/3rd_year_U
CL.pdf

[6] K. Nikolić, A. S. Sadek, and M. Forshaw, “Fault-tolerant
techniques for nanocomputers,” Nanotechnology, 13 (Jun.
2002), 357–362.

[7] J. Han, and P. Jonker, “A system architecture solution for
unreliable nanoelectronic devices,” IEEE Trans. Nanotech., 1
(Dec. 2002), 201–208.

Figure 10. Current (worst case) for MAJ-3 MUX RCAs with
short-circuited outputs (in 0.18 µm).

Figure 8. Current (worst case) for MAJ-3 MUX RCAs using
MAJ-3 gates (in 0.18 µm).

Figure 9. Current (worst case) for MAJ-3 MUX RCAs when
short-circuiting the outputs and using inverters (in 0.18 µm).

C
u

r
re

n
t

(
)

�
�

Time (s)�

8.0

7.5

1.2

7.0

6.5

6.0

5.5

5.0

4.5

4.0
0.0 0.1 0.2 0.30.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Figure 11. Current (worst case) for MAJ-3 MUX RCAs
when short-circuiting the outputs and using inverters (like

Fig. 9, but in 70 nm BPTM).

[8] J. Han, and P. Jonker, “A defect- and fault-tolerant architecture
for nanocomputers,” Nanotechnology, 14 (Feb. 2003), 224–
230.

[9] A. S. Sadek, K. Nikolić, and M. Forshaw, “Parallel information
and computation with restitution for noise-tolerant nanoscale
logic networks,” Nanotechnology, 15 (Jan. 2004), 192–210.

[10] J. von Neumann, “Probabilistic logics and the synthesis of
reliable organisms from unreliable components,” in C. E.
Shannon, and J. McCarthy (Eds.), Automata Studies, Princeton,
NJ: Princeton Univ. Press, 1956, 43–98.

[11] J. R. Heath, P. J. Keukes, G. S. Snider, and R. S. Williams, “A
defect-tolerant computer architecture: Opportunities for
nanotechnology,” Science, 280 (Jun. 12, 1998), 1716–1721.

[12] S. Tatapudi, and V. Beiu, “Split-precharge differential noise
immune threshold logic gate (SPD-NTL),” in J. Mira, and J. R.
Álvarez (Eds.): Artificial Neural Nets Problem Solving
Methods, Springer, LNCS 2687, Jun. 2003, 49–56.

[13] M. Sulieman, and V. Beiu, “Design and analysis of SET
circuits: Using MATLAB and SIMON,” Proc. IEEE-
NANO’04, Munich, Germany, Aug. 2004, 618–621.

[14] S. Aunet, and M. Hartmann “Real-time reconfigurable
threshold elements and some applications to neural hardware,”
Proc. Intl. Conf. Evolvable Sys. ICES’03, Trondheim, Norway,
Springer LNCS 2606, Mar. 2003, 365–376.

[15] A. Schmid, and Y. Leblebici, “Robust circuit and system
design methodologies for nanometer-scale devices and single-
electron transistors,” Proc. IEEE-NANO’03, San Francisco,
CA, Aug. 2003, vol. 2, 516–519.

[16] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli,
“Fault tolerance techniques for wireless ad hoc sensor

networks,” Proc. IEEE Sensors, Orlando, FL, Jun. 2002, 1491–
1496.

[17] A. J. KleinOsowski, and D. J. Lilja, “The NanoBox project:
Exploring fabrics of self-correcting logic blocks for high defect
rate molecular device technologies,” Proc. IEEE Annual Symp.
VLSI ISVLSI’04, Lafayette, LA, Feb. 2004, 19–24.

[18] R. Reischuk, and B. Schmeltz, “Area efficient methods to
increase the reliability of combinatorial circuits,” Proc. Intl.
Symp. Th. Aspects Comp. Sci. STACS’89, Paderbon, Germany,
Feb. 1989, Springer, LNCS 349, 314–326. Also in B. Monien,
and T. Ottmann (Eds.): Data Structures and Efficient
Algorithms, Springer, LNCS 594, 1992, 363–389.

[19] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla,
“Evaluating reliability of defect tolerant architecture for
nanotechnology using probabilistic model checking,” Proc.
Intl. Conf. VLSI Design VLSID’04, Mumbai, India, Jan. 2004,
907–912.

[20] S. Roy, V. Beiu, and M. Sulieman, “Reliability analysis of
some nano architectures,” presented at the Special Workshop
on Neural Inspired Architectures for Nanoelectronics,
NIPS’03, Whistler, Canada, Dec. 2003. Available:
http://www.eecs.wsu.edu/~vbeiu/workshop_nips03/Presentatio
ns/S_Roy.pdf

[21] S. Roy, and V. Beiu, “Multiplexing schemes for cost effective
fault tolerance,” Proc. IEEE-NANO’04, Munich, Germany,
Aug. 2004, 589–592.

[22] W. S. Evans, “Information Theory and Noisy Computation,”
Ph.D. dissertation, Univ. of California at Berkeley, ICSI Tech.
Rep. TR-94-57, Berkeley, CA, USA, Nov. 1994. Available:
http://www.cs.ubc.ca/~will/papers/thesis.pdf

Table 1. Performances of Different MAJ-3 MUX (redundant) Ripple Carry Adders

Circuit and Technology Node Delay (µs) Current (nA) Power (nW) PDP (fJ) PDP/stage (fJ)

0.18 µm at 350 mV

One RCA (no defects) 17.140 11.68 4.09 69.90 2.18
3 RCAs short-wired (no defects) 17.230 36.15 12.65 218.00 6.81

Max 1353.00 473.60 26779.00 836.90
Min 784.00

3 RCAs short-wired
(one RCA stuck-at-zero)

56.550
Step 17.78

3 RCAs with inverters (no defects) 21.260 35.07 12.27 261.00 8.35
Max 1337.00 467.950 18152.00 581.00
Min 655.00

3 RCAs with inverters
(one RCA stuck-at-zero)

38.790
Step 21.31

3 RCAs with MAJ-3 (no defects) 32.150 38.39 13.44 432.00 13.50
3 RCAs with MAJ-3
(one RCA stuck-at-zero)

32.200

34.93 12.23 393.70 12.30

70 nm (BPTM) at 200 mV

One RCA (no defects) 0.543 362.00 72.40 39.31 1.23
3 RCAs with inverters (no defects) 0.652 1053.00 210.60 137.31 4.29

Max 7751.00 1550.20 1664.91 52.03
Min 3737.00

3 RCAs with inverters
(one RCA stuck-at-zero)

1.074
Step 125.44

[23] W. S. Evans, and L. J. Schulman, “On the maximum tolerable
noise of k-input gates for reliable computations by formulas,”
IEEE Trans. Inform. Theory, 49 (Nov. 2003), 3094–3098.

[24] Y. Qi, J. Gao, and J. A. B. Fortes, “Probabilistic computation:
A general framework for fault-tolerant nanoelectronic
systems,” Tech. Rep. TR-ACIS-03-002, ECE Dept., University
of Florida, Gainesville, FL, USA, Nov. 28, 2003. Available:
http://www.acis.ufl.edu/techreports/acis03002.pdf

[25] R. Reischuk, “Can large fanin circuits perform reliable
computations in the presence of faults?,” Theoretical Comp.
Sci., 240 (Jun. 2000), 319–335.

[26] H. L. Hughes, and J. M. Benedetto, “Radiation effects and
hardening of MOS technology: Devices and circuits,” IEEE
Trans. Nuclear Sci., 50 (Jun. 2003), 500–521.

[27] M.-F. Lan, A. Tammineedi, and R. Geiger, “A new current
mirror layout technique for improved matching characteristics,”
Proc. Midwest Symp. Circ. and Sys. MWSCAS’99, Las Cruces,
NM, Aug. 1999, vol. 2, 1126–1129.

[28] M.-F. Lan, and R. Geiger, “Gradient sensitivity reduction in
current mirrors with non-rectangular layout structures,” Proc.
Intl. Symp. Circ. and Sys. ISCAS’00, Geneva, Switzerland,
May 2000, vol. 1, 687–690.

[29] D. Hampel, K. J. Prost, and N. R. Scheinberg, “Threshold logic
using complementary MOS device,” U.S. Patent 3 900 742,
Jun. 24, 1974.

[30] J. Nyathi, V. Beiu, S. Tatapudi, and D. Betwoski, “A charge
recycling differential noise-immune perceptron,” Proc. Intl.
Joint Conf. Neural Networks IJCNN’04, Budapest, Hungary,
Jul. 2004, 1995–2000.

[31] B. H. Calhoun, A. Wand, and A. Chandrakasan, “Device sizing
for minimum energy operation in subthreshold circuits,” Proc.
Custom IC Conf. CICC’04, Orlando, FL, Oct. 2004, 95–98.

[32] V. Beiu, J. M. Quintana, and M. J. Avedillo, “VLSI
implementation of threshold logic: A comprehensive survey,”
IEEE Trans. Neural Networks, 14 (Sep. 2003), 1217–1243.

[33] J. Rabaey, M. Pedram, and P. Landman, “Low Power Design
Methodologies,” Kluwer, Boston, 1995.

[34] P. P. Gelsinger, “Microprocessors for the new millennium:
Challenges, opportunities, and new frontiers,” Proc. Intl. Symp.
Circ. and Sys. ISCAS’01, Sydney, Australia, May 2001, 22–25.

[35] E. J. Nowak, “Maintaining the benefits of CMOS scaling when
scaling bogs down,” IBM J. Res. & Dev., 46 (Mar.-May 2002),
169–180.

[36] S. Aunet, Y. Berg, O. Tjore, Ø. Næss, and T. Sæther, “Four-
MOSFET floating-gate UV-programmable elements for
multifunction binary logic,” Proc. World Multiconf. Sys.
Cyber. & Informatics, Orlando, FL, Jul. 2001, vol. 3, 141–144.

[37] T. Ytterdal, and S. Aunet, “Compact low-voltage self-
calibrating digital floating-gate CMOS logic circuits,” Proc.
Intl. Symp. Circ. and Sys. ISCAS’02, Scottsdale, AZ, May
2002, vol. 5, 393–396.

[38] S. Aunet, T. Ytterdal, Y. Berg, and T. Sæther, “Multiple-input
floating-gate linear threshold element tuned by well potential
adjustment,” Proc. Norchip Conf., Copenhagen, Denmark,
Nov. 2002, 220–225.

[39] Leiv Eiriksson Nyskaping, Trondheim, Snorre Aunet,
Norwegian patent application no. 20035537, Dec. 2003

[40] S. Aunet, B. Oelmann, S. Abdalla, and Y. Berg
“Reconfigurable subthreshold CMOS perceptron,” Proc. Intl.
Joint Conf. Neural Networks IJCNN’04, Budapest, Hungary,
Jul. 2004, 1983–1988.

[41] T. S. Lande, D. T. Wisland, T. Sæther, and Y. Berg “FLOGIC
– Floating-gate logic for low-power operation,” Proc. Intl.
Conf. Circ. Electr. Sys. ICCES’96, Rhodos, Greece, Oct. 1996,
vol. 2, 1041–1044.

[42] T. Kobayashi, and T. Sakurai, “Self-adjusting threshold-voltage
scheme (SATS) for low-voltage high-speed operation,” Proc.
Custom Integr. Circ. Conf. CICC’94, San Diego, CA, May
1994, 271–274.

[43] J. B. Lerch, “Threshold gate circuits employing field-effect
transistors,” U.S. Patent 3 715 603, Feb. 6, 1973.

[44] A. Weinberger, and J. L. Smith, “A logic for high-speed
addition,” Natl. Bur. Stand. Circ. 591, 1958, 3–12.

[45] P. M. Kogge, and H. Stone, “A parallel algorithm for the
efficient solution of a general class of recurrence equations,”
IEEE Trans. Comp., 22 (Aug. 1973), 786–793.

[46] R. E. Ladner, and M. J. Fischer, “Parallel prefix
computations,” J. ACM, 27 (Oct. 1980), 831–838.

[47] R. P. Brent, and H. T. Kung, “A regular layout for parallel
adders,” IEEE Trans. Comp., 31 (Mar. 1982), 260–264.

[48] T. Han, and D. A. Carlson, “Fast area-efficient VLSI adders,”
Proc. Symp. Comp. Arithmetic ARITH’87, Como, Italy, May
1987, 49–56.

[49] V. Beiu, “A survey of perceptron circuit complexity results,”
Proc. Intl. Joint Conf. Neural Networks IJCNN’03, Portland,
OR, Jul. 2003, vol. 2, 989–994.

[50] P. Celinski, S. Al-Sarawi, D. Abbott, S. D. Cotofana, and S.
Vassiliadis, “Logical effort based design exploration of 64-bit
adders using a mixed dynamic-CMOS/threshold-logic
approach,” Proc. Annual Symp. VLSI ISVLSI’04, Lafayette,
LA, Feb. 2004, 127–132.

[51] V. Beiu, A. Djupdal, and S. Aunet “Ultra low power neural
inspired addition: When serial might outperform parallel
architectures,” Intl. Work-conf. Artif. Neural Networks
IWANN’05, Barcelona, Spain, Jun. 2005, in press.

[52] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu, “New
paradigm of predictive MOSFET and interconnect modeling for
early circuit simulations,” Proc. Custom IC Conf. CICC’00,
Orlando, FL, May 2000, 201–204.

[53] V. Beiu, “A novel highly reliable low-power nano architecture:
When von Neumann augments Kolmogorov,” Proc. Intl. Conf.
App.-specific Sys., Arch. and Processors ASAP’04, Galveston,
TX, Sep. 2004, 167–177.

[54] A. M. Shams, T. K. Darwish, and M. A. Bayoumi,
“Performance analysis of low-power 1-bit CMOS full adder
cells,” IEEE Trans. VLSI Sys., 10 (Feb. 2002), 20–29.

[55] S. Aunet, and V. Beiu, “Ultra low power fault tolerant neural
inspired CMOS logic,” Intl. Joint Conf. Neural Networks
IJCNN’05, Montréal, Canada, Jul.-Aug. 2005, in press.

