
Evolving Redundant Structures for Reliable Circuits — Lessons Learned

Asbjoern Djupdal and Pauline C. Haddow
CRAB Lab (http://crab.idi.ntnu.no)

Department of Computer and Information Science
Norwegian University of Science and Technology

{djupdal,pauline}@idi.ntnu.no

Abstract

Fault Tolerance is an increasing challenge for integrated
circuits due to semiconductor technology scaling. This pa-
per looks at how artificial evolution may be tuned to the
creation of novel redundancy structures which may be ap-
plied to meet this challenge. However, as these structures
are unknown it is a challenge in itself to tune evolution to
create them. As such, no solution has yet been found. This
paper provides a discussion about the issues addressed and
experiments conducted and thus provides an overview of the
lessons learned in this work.

1 Introduction

As the semiconductor feature size decreases and the
number of transistors on a single chip increases, one of the
growing challenges facing the electronic design community
is faulty behaviour [11]. This challenge may be met by ei-
ther improved detection and repair techniques, by improved
fault tolerance methods or a combination of the two.

The semiconductor fault challenge may be, in general,
a long term challenge but is here today for large ICs, like
Field Programmable Gate Arrays (FPGA). The mass pro-
duction of FPGAs enables FPGAs to be produced in the
newest technologies. Xilinx Virtex 5 [18] is an example of
a new FPGA series from Virtex produced in 65nm technol-
ogy with up to 330,000 logic cells.

If faults are expected to occur in a digital circuit, fault
tolerance — the ability to function correctly in the presence
of faults, may be achieved by incorporating redundancy
(additional resources) in some form. These additional re-
sources may be in the form of additional hardware, in which
case it is called hardware redundancy [14] which is the fo-
cus of this paper.

One well known hardware fault tolerance method is
Triple Modular Redundancy (TMR) [14]. This method in-
volves tripling logic and using a voter to choose the correct

solution. Although TMR is a very successful redundancy
technique, its accepted weaknesses are the tripling of area
and the susceptibility of the voter to faults. Also, if such a
technique were to be applied to all the logic on an FPGA,
around 2/3rds of the available logic would be applied to re-
dundancy. This would drastically reduce the amount of pri-
mary logic on the device.

When introducing redundancy in a circuit, there is often
a trade-off between area and fault tolerance. TMR may be
said to trade area for higher fault tolerance. Much research
is currently looking at more area efficient ways of achieving
fault tolerance and section 2 provides a short summary of
some of this work.

The goal for the work behind this paper is to find new
ways of introducing redundancy in a circuit. The ultimate
goal for this work is fault tolerance in FPGAs. While the
work presented in this paper is not specifically targeting FP-
GAs, the goal is to gain knowledge on novel redundancy
techniques that may later be adapted for use in an FPGA
context. To find new redundancy techniques it is impor-
tant to free oneself from the constraints brought upon us by
thinking in the way of traditional redundancy. The whole
way one thinks about designing at either the circuit design
or technology architecture level is influenced by the way
that one is taught electronics, designed electronics and the
tools used in the design process. One way of freeing one-
self from these human and design automated constraints is
to search for ideas using some sort of heuristic search pro-
cess. One such process is that of evolutionary algorithms
(EA) [4].

The application of EA to the design of hardware is
termed evolvable hardware [10]. The goal being, either to
explore for unique solutions or to optimise existing solu-
tions. However, in both cases, the goal is usually to obtain
a given behaviour e.g. a binary adder [9]. Further, evolu-
tion may be applied when seeking some sort of structure,
like evolving the french flag [16]. In both these cases the
goal may be explicitly defined and given to the EA for com-
parison between the evolving solutions and the sought solu-

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

tions. In the former case it is the functionality that needs to
be explicitly defined whereas in the latter case the structure
need be explicitly defined.

When evolving redundant circuits for the purpose of
finding novel redundancy techniques, one is looking for re-
dundant structures. However, these structures are unknown,
unlike the case of the earlier mentioned french flag prob-
lem [16]. It is not possible to explicitly describe the struc-
ture that one is seeking, only the functionality of the sought
circuit — perhaps in terms of the truth table.

In the earlier work of Hartmann and Haddow [7], fault
tolerant circuits were evolved. While achieving high fit-
ness on a reliability based fitness function, they did not fo-
cus on creating 100% functional circuits where reliability
is achieved through redundancy. In this work, the goal is
to push evolution to retain 100% functionality and to find
ways to introducing redundancy for fault tolerance in the
circuit. To the surprise of the authors themselves this prob-
lem is much more challenging than it might first appear. As
such, the paper presents some of the approaches that have
been applied to address this challenge and discusses these
and further possibilities.

Section 2 gives a summary of the state of the art in
area efficient redundancy techniques for FPGAs. Section 3
presents some important issues that must be addressed when
evolving redundant circuits. Experimental setup, results and
discussion is given in section 4 and the paper concludes in
section 5.

2 Redundancy in FPGAs

To achieve area efficient defect tolerance, the typical ap-
proach is to exploit structural regularity [12]. The FPGA
has a regular structure, which has inspired several tech-
niques for defect tolerance in FPGAs. Techniques, espe-
cially in the context of enhancing yield, are reviewed in
detail in [3]. Selected techniques may be classified under
Node Redundancy, Configuration, Precompiled Configura-
tion and Local Redundancy Techniques.

2.1 Node Redundancy

The node redundancy class of techniques contains the
most widely studied techniques for redundancy in FPGAs
and have been used with success to enhance yield in com-
mercial Altera FPGAs [1]. The idea is to reserve spare
nodes (logical blocks) in the FPGA architecture and enable
spare nodes to take over for defective ones using on-chip
resources. An early example [8] provided redundancy in
the form of a redundant row. In the case of a defect, found
during factory tests, the defective row is disconnected, ver-
tical wiring is set up to bypass the disconnected row and all
lower rows are shifted one row down. This reconfiguration

is performed once, and may therefore be completed at the
factory with antifuses or similar write-once technology.

The node redundancy technique has since been gener-
alised to applying individual spare nodes instead of entire
rows. A single defect then results in using one of the spare
nodes [6], instead of discarding a whole row of nodes.

A difficulty with using such a method is to trade off
hardware simplicity for good defect coverage. Changing
the physical location of functionality from faulty functional
nodes requires rerouting and flexible rerouting is expensive
in terms of both area and delay and is difficult to achieve
on-chip. Lack of flexibility either means that fewer defects
are tolerated or that more redundancy is wasted on each of
them.

2.2 Configuration

The FPGA, or a system external to it, may change its
configuration so that defective portions of the chip are left
unused. The concept here is to use spare resources that are
naturally present in an FPGA design as no FPGA design
uses all of the FPGAs resources. Doing a new place-and-
route is very computationally expensive and uses much re-
sources and is, therefore, often completed off-chip using
standard synthesis tools (the Teramac project [2]). How-
ever, the Cell Matrix [15] provides an example of an on-chip
solution incorporating a complex cell solution.

2.3 Precompiled Configuration

A further alternative to node redundancy is to share some
of the work of rerouting with the synthesis tools. The bit-
stream may contain several different configurations, each
assuming a defect in a different position. At configuration
time, the chip may select those configurations that fits the
current defect map [13].

2.4 Local Redundancy

The redundancy methods presented may be said to work
at the system level. Local redundancy, on the other hand,
introduces redundancy that effects only the area local to it
i.e. adding extra local routing between two switch blocks.
If a defective wire is found, the redundant one takes over its
functionality [6, 19].

3 Issues on Evolving Redundant Structures

As stated, the goal of this work is to evolve redundant
structures. There are, however, a number of issues that must
be addressed and this section gives an introduction to these
issues.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

3.1 Behaviour (Function)

In this paper, the goal is not to evolve a multiplier, a flip
flop or some other specified functionality. Instead our goal
is to create redundant structures that enhances fault toler-
ance. However, we cannot explicitly define these structures
but instead implicitly define them through a function that
performs well in the presence of faults. As such, we need
to define some kind of function and expose the function to
faults. However, if the function is a challenge for evolution,
evolution will use much time trying to achieve the function.
This is, of course, undesirable. Instead, the function should
be relatively easily evolvable so that evolution time is fo-
cused on the problem in hand, achieving redundant struc-
tures.

The size of the minimum representation of a given func-
tion is an important criteria when choosing a function. If
there are very few gates, any form of redundancy will pro-
vide a substantial overhead, so a large circuit would prob-
ably be better suited for redundancy structures. However,
this challenge has to be traded off against the challenge of
evolving large circuits and wasting much evolution time on
achieving the function itself rather than fault tolerance.

3.2 Fault Models

Two fault models are considered in this work: the gate
reliability model and the single fault model. In the gate reli-
ability model, each gate has a certain probability of failing.
A fault scenario is one possible configuration of faulty gates
for a given circuit. If a fault scenario for the gate reliabil-
ity model is to be created, each gate in the circuit is tested
against a random number generator and selected to be faulty
or not based on a chosen gate reliability. This is a reasonable
model of reality as the probability of having failing gates in
a circuit is directly proportional to the number of gates in
the circuit.

In the single fault model, a circuit can have exactly one
fault at any time. If a fault scenario for the single fault
model is to be created, one of the gates are selected to fail.
Further, there are two cases of the single fault model. Either
every possible gate failure is tested or a subset of possible
gate failures may be tested to assess the reliability of the
circuit in hand. The former is, of course, a more thorough
and accurate test but uses significant resources. The latter is
introduced with a view to reducing evaluation time.

3.3 Measuring Functionality and Reliabil-
ity

The functionality of a circuit is found by trying all possi-
ble input values and recording the respective output values

Table 1. Naming convention for reliability
metrics together with fault models applied

Name Meaning
Rtrad_single Rtrad using single fault model
Rtrad_gate Rtrad using gate reliability
Rehw_single Rehw using single fault model
Rehw_gate Rehw using gate reliability

of the circuit. If all recorded output values correspond ex-
actly to the desired truthtable for the function, the circuit
is working perfectly, otherwise 100% functionality is not
achieved. Traditionally, the result of such a test for func-
tionality is either “not working” (0) or “working” (1), re-
ferred to as fbool herein.

When using artificial evolution to create circuits, a mea-
sure of functionality is usually included in the fitness func-
tion. Since fbool provides little information as to the qual-
ity of the solutions that are not 100% functional, evolu-
tion is unable to distinguish between two solutions that do
not reach 100% functionality. Evolution needs to separate
a circuit that is almost working, from a circuit that is far
from working, even though both of these circuits will have
fbool = 0 (“not working”). One way of achieving more
information is to measure the hamming distance between
the circuit output and the desired output, i.e. the number of
bits that are different between these two solutions. In this
paper, the hamming distance is normalised to the interval
[0, 1] where 1 is 100% working. This measure of function-
ality is called fham. If a circuit is working, both fbool and
fham will be 1.

A reliability metric measures how well a circuit func-
tions in the presence of faults. The traditional reliability
metric Rtrad is the average of all fbool results after hav-
ing tested a number of randomly selected fault scenarios.
A second reliability measure can be formulated based on
fham. The reliability metric Rehw is the average of all fham

results after having tested a number of randomly selected
fault scenarios.

The possible fault scenarios depend on the fault model
chosen. The reliability of the circuit will depend on both
the reliability metric and the fault model applied. To aid
readability of the discussions and experiment the naming
convention in table 1 is applied in this paper.

It is important to note that these reliability measures may
be applied to provide a measure as to how well the cir-
cuit, when treated as a black box, performs in the pres-
ence of faults. It says nothing about the redundancy struc-
tures themselves which is, of course, the goal of this work.
So how can one measure the presence of redundancy in a
circuit? Automatic Test Pattern Generation (ATPG) tools

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

may be used to identify redundancy as gates that can not
be tested by any test vector and therefore represent redun-
dant gates. However, this test detects redundancy whether
useful (contributing to fault tolerance) or not. The question
of detecting useful redundancy structures is in fact quite a
complex one as highlighted herein.

4 Discussion, Experiments and Results

The purpose of this section is not only to present the ex-
perimental work in this paper, but also to present the process
of analysing the problem itself and the intermediate results
which led to the lessons learned.

4.1 Experimental Setup

All experiments are conducted on simulations of circuits
in a digital feed forward circuit simulator. Only Boolean
logic is allowed and the following gates are available: AND,
OR, NAND, NOR, NOT. A faulty gate is simulated by in-
verting the output of the gate. The EA is Cartesian Genetic
Programming [17] with the following parameters:

• Maximum number of gates: 200

• Population size: 20

• Tournament selection with elitism (g = 3, p = 0.7)

• Crossover rate: 0.2

• Mutation rate: 0.05 (mutation applied at the gate level)

4.2 Single Fault Experiments

In earlier work by Hartmann and Haddow [7], experi-
ments were performed using the gate reliability model and
circuits were evolved with a fitness function based on Rehw.
These experiments provided evidence that evolution traded
off functionality for improving fitness. The number of gates
were reduced to minimise the probability of having failing
gates in the circuit, and instead of creating circuits that were
100% correct, simpler functions were created giving correct
output for most of the possible input values.

Why did earlier experiments not lead to redundant struc-
tures, even though they were evolved with a reliability met-
ric as fitness?

It seems that evolution chose the simplest way of at-
tacking the problem — avoiding it by shrinking the circuit.
When using the gate reliability model, the probability of
having a failing gate is reduced when the number of gates
is reduced. There is, therefore, an implicit size factor in the
fitness evaluation that encourages small circuits, which is
thus inhibiting larger circuits with redundancy.

These earlier experiments focused on making circuits
that score high on the chosen reliability metric for given
functions — multipliers and adders. Further work [5], also
looked at the reliability metrics themselves and how they
compare and may be applied in the context of traditional
and evolved designs. As such, none of this work explicitly
searched for redundancy structures and the goal herein is to
find ways to either implicitly or explicitly specify a search
leading to redundancy structures. Thus functionality and
reliability in terms of a given metric are not in focus in this
paper.

How could evolution be forced to create larger and more
interesting redundant circuits?

One way of encouraging large circuits is to introduce a
size factor in the fitness function that evens out the negative
effect that a large circuit has on reliability. Introducing a
size factor would require some sort of weighting between
functionality and size. However, a size factor does not, in
itself, encourage useful redundancy, just more gates.

Redundancy techniques typically introduce some kind of
overhead, in terms of the number of gates, and this overhead
is especially dominating for smaller circuits, such as those
experimented with herein. Further, the number of gates in
the circuit affects the probability that the circuit will have
a gate that fails when applying the gate reliability model.
However, applying the single fault model removes any bias
towards smaller circuits.

The single fault model may be applied with either the
Rehw or the Rtrad metric. As stated, Rehw provides a mea-
sure of how a circuit degrades in the presence of faults.
Rehw may have a non-zero value even with faults present,
whether or not the circuit has any redundancy or not. Rtrad,
on the other hand, is zero in the presence of a fault unless
redundancy is present. As such Rtrad may be said to be a
better indicator of redundancy. Rtrad does, however, not
provide evolution with sufficient fine-grained information.
A two part fitness function was thus created, as presented in
equation (1). For the purpose of the experiments herein, k1

was set to 0.3 and k2 was set to 0.7.

f = k1 · fham + k2 · Rtrad_single (1)

The first part containing fham takes care of building a
functional circuit. Before fham is 1.0, Rtrad_single will re-
main zero and thus does not contribute to the total fitness.
When fitness = 0.3, a fully functional circuit is evolved and
Rtrad_single will be the part that evolution will have to in-
crease in order to improve fitness.

As stated, a particular function is not the focus of the
work herein. However, a function is needed for fitness eval-
uation. What function should be applied?

In this work, redundant structures are sought, requir-
ing analysis of the evolved circuits after evolution. Earlier
work [7] focused on 2 · 2 multipliers and adders. Having

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Table 2. Results from Rtrad_single experiments

Size Fitness Rtrad_single Rtrad_single (opt)
0 72 0.862 0.792 0
1 111 0.936 0.901 0
2 90 0.906 0.856 0
3 40 0.803 0.700 0
4 132 0.941 0.909 0
5 99 0.907 0.859 0
6 68 0.854 0.779 0
7 96 0.926 0.885 0
8 46 0.798 0.696 0
9 65 0.891 0.831 0

2

1

output

f

r

inputs

Figure 1. Redundancy structure exploiting
unreachable gate

more than one output is from a functional point of view the
same as having several circuits (even though logic may be
shared between different outputs). Concentrating the evolu-
tionary efforts on only one output thus seemed reasonable.
In addition, analysis of a single output circuit is somewhat
simpler than for a multiple output circuit.

The truthtable of a suitable function was constructed
(“1001011101100110” with bit zero to the right), that is rel-
atively easy to evolve, has four inputs and one output and
with a non-redundant implementation of nine gates.

The results of ten evolution runs are given in table 2.
Note that it would seem that evolution has been forced to
use more gates and a reasonable fitness is achieved with
Rtrad_single lying between 0.7 and 0.9.

The results seemed promising until a manual inspection
identified that what was being exploited by evolution was
the concept of unreachable gates

An example of unreachable gates is shown in figure 1,
where the ellipse marked f is a circuit performing our de-
sired function. The OR gate marked 1 is unreachable. It will
always have a constant one as output, no matter what the
main circuit inputs are. The subcircuit having this unreach-
able gate as its output, marked r, will not affect the main
circuit output in any way, so any faults in this area will be
swallowed without creating a wrong output. Making a small
functioning subcircuit f and making a large variant of such
an unwanted subcircuit r will result in a high Rtrad_single.

These unreachable gate structures are, however, not use-
ful for our purpose. They contain no real redundancy. The

Table 3. Results from Rtrad_single experi-
ments where unreachable gate structures are
avoided

Size Fitness Rtrad_single Rtrad_single (opt)
0 106 0.933 0.896 0.896
1 135 0.937 0.904 0.904
2 135 0.937 0.904 0.904
3 61 0.883 0.820 0.820
4 61 0.883 0.820 0.820
5 108 0.921 0.880 0.880
6 109 0.922 0.881 0.881
7 108 0.921 0.880 0.880
8 101 0.923 0.881 0.881
9 101 0.923 0.881 0.881

last column in table 2, “Rtrad_single (opt)”, show the value
of Rtrad_single after the circuits have been optimised in
such a way that the unreachable gate structures have been
removed. The results show clearly that no other form of
redundancy is present in these circuits.

The fitness value for circuits with unreachable gate struc-
tures is high. Such circuits are therefore the kind of circuits
that are likely to be promoted to future generations. Even
if circuits with good redundancy structures exist in early
generations, they are probably discarded because the fitness
function is again not explicit enough as to what a redundant
structure is.

4.3 Single Fault, Excluding Unreachable
Gates

Growing the before mentioned unreachable gate struc-
tures is probably the easy solution for the EA. Those struc-
tures should therefore be discouraged in some way so that
other more useful redundancy structures may emerge.

How can evolution both be forced to increase the size of
the circuits but not exploit unreachable gate structures?

Again, one might say that evolution has found a way
to avoid the problem of gate faults but has not solved it.
Removing the possibility of evolution creating unreachable
gates would constrain evolution’s freedom to explore for
circuits. It was, therefore, deemed more appropriate to mod-
ify the fitness function such that unreachable gate structures
do not contribute positively to the fitness value. This was
achieved by detecting all gates that are part of a subcircuit
with unreachable gates as outputs and when applying the
single faults, faults were only applied to gates outwith these
subcircuits.

A summary of the results of adapting the fault model to
apply faults at only reachable gates may be found in table 3.
As shown, it would seem that the problem of unreachable

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

2 output

f

r 1

inputs

Figure 2. Reachable gates that do not con-
tribute to the output

gates was solved and reasonable fitness was again reached.
However, evolution once again found a way to cheat.
When known unreachable gate structures were made un-

profitable, another and similar kind of structure was in-
vented by the EA. Instead of introducing unreachable gates
at the exit point for a large random subcircuit, structures
such as the example shown in figure 2 were created. Simi-
lar to the previous example, the ellipse marked f represents
a circuit performing our desired function. Circuit f is con-
nected to an AND gate (marked 2). Evolution exploits the
fact that the second input to this AND gate has “input don’t
cares” whenever the first input is a logical 1. By introducing
a structure, such as the one represented by gate 1, evolution
can once again grow a large circuit r that does not contribute
to the output in any way, yet scores positively on fitness.

This is also an unwanted structure. It is, however, not as
easy to detect automatically as the unreachable gate struc-
tures because there is an unlimited number of ways to con-
struct similar solutions. It is, therefore, a challenge to ex-
clude such structures from fitness evaluation.

4.4 Redundant Subcircuits

How can evolution be forced to put redundant structures
within the circuit itself?

An alternative way of evolving redundant circuits is to
split the target circuit into smaller subcircuits and evolve
redundant versions of these subcircuits. This may provide
evolution with a simpler problem to evolve and analysing
these smaller circuits for redundancy might be simpler.

The problem of selecting subcircuits is not an easy one.
What granularity to use? How to avoid illegal structures,
like feedback loops? Since the goal of this work has noth-
ing to do with partitioning, basic logic gates were selected
as subcircuits so as to avoid the partitioning problem. Re-
dundant versions of the basic logic gates were evolved and
these together with the logic gates themselves were avail-
able to evolution to create a redundant circuit.

Again, evolution chose to find ways of introducing un-
reachable gates to the redundant logic gates in the same way
as was introduced to the complete circuit (figure 2).

4.5 Larger Gate Reliability Experiments

When it was clear that using Rtrad_single in the fitness
function did not result in any useful redundancy structures,
it was decided to try looking once again at the gate reliabil-
ity model.

How could the complexity of the function sought be in-
creased whilst avoiding the implicit size reduction in the
fitness function and achieving a reasonable evaluation time
despite applying the gate reliability model?

One of the challenges in using a gate reliability model is
that there are a large number of possible fault scenarios. Us-
ing only a few fault scenarios drastically reduces the evalua-
tion time at the expense of a very noisy fitness evaluation. A
noisy fitness evaluation makes the task harder for evolution.

One possibility is to exploit the fact that the number of
faulty gates in a fault scenario with the gate reliability model
is binomially distributed. If X is a random variable for the
number of faults in a fault scenario, x is the number of
faults, n is the number of gates in the circuit and p is the
fail rate for the gates (1−gate reliability), equation (2) may
be used to find the probability of having a specific number
of faulty gates in a fault scenario.

P [X = x] = b(x;n, p) =
(

n

x

)
px(1 − p)n−x (2)

The circuit may be evaluated with the zero fault scenario
and all the single fault scenarios and the results may be
scaled by the probability for that number of faults (x0 and
x1). However, the case of more than one fault would still
be computationally expensive and, as such, it was chosen
to express reliability excluding a component for more than
one fault — see equations (3) and (4) for Rtrad and Rehw

respectively.

Rtrad_gate = x0 · fbool + x1 · Rtrad_single (3)

Rehw_gate = x0 · fham + x1 · Rehw_single (4)

The third output of the 3 · 3 multiplier was chosen be-
cause its non-redundant implementation needs 17 gates, as
opposed to 9 in the earlier experiments. A fitness function
was designed that ensures that a fully functioning circuit
always scores higher than a circuit that does not function
100% correctly. This function is shown in equation (5). As
shown, as long as the functionality is not 100% (fham is
not 1.0), the Rehw_gate part of the fitness function does not
contribute to the fitness value.

f = k1 · fham + k2 ·
{

0 if fham < 1.0
Rehw_gate if fham = 1.0 (5)

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Table 4. Results from larger Rehw_gate experi-
ments

Size Fitness fham Rehw_gate Rtrad_single

0 23 0.941 1 0.921 0
1 22 0.946 1 0.928 0
2 23 0.944 1 0.928 0
3 23 0.946 1 0.928 0
4 23 0.936 1 0.916 0
5 26 0.940 1 0.924 0
6 24 0.940 1 0.923 0
7 23 0.928 1 0.907 0
8 25 0.943 1 0.928 0
9 24 0.943 1 0.928 0

The best fit individuals from nine evolutionary runs are
shown in table 4. It is clear from the results that while evo-
lution is able to make circuits that work 100% when no
faults are applied (fham equals 1.0), they do not include
any redundancy: Rtrad_single is zero so no gates may fail
without damaging the output. Instead of introducing redun-
dancy, evolution tries to minimise the number of gates while
still maintaining functionality. This is also obvious from the
gate counts which are again significantly lower than those
in tables 2 and 3, despite the larger circuit being evolved.

Is Rehw_gate good enough at rewarding redundancy?
A benchmark that may be used for investigating how

good the fitness function rewards redundancy, is to test the
fitness function on a circuit and on a TMR-version of the
same circuit. TMR is a known redundancy structure, and
if a fitness function scores lower on the TMR version of
the circuit it is an indication that the fitness function might
also score lower for other redundant structures that might be
considered interesting. A 17 gate example of the third out-
put of the 3 · 3 multiplier was investigated in this context.

This benchmarking was performed both on Rehw_gate

and Rtrad_gate, and the results are shown in table 5. The
“quick” way of estimating the metrics is that described in
equations (3) and (4) and applied during evolution. “MC”
reflects a thorough Monte Carlo simulation of the circuit. It
can be seen in the table that both Rehw_gate and Rtrad_gate

(MC) are correctly favouring the TMR circuit, but that
the “quick estimate” of Rehw_gate is presenting the TMR
poorer than the non-redundant version. This would indicate
that the fitness function seems reasonable for Rtrad_gate but
not Rehw_gate. This may be explained by the fact that with
two or more faults appearing in a circuit, Rtrad_gate is close
to zero. However, Rehw_gate will be significantly more than
zero even for two or more faults. As such, the choice to ex-
clude the “more than one fault” component of (4) is detri-
mental to Rehw_gate.

When using the quick estimate, Rtrad_gate seems better

Table 5. Benchmarking Rehw_gate and
Rtrad_gate using 3 · 3 multiplier, output 3

Rehw_gate Rtrad_gate

Size Quick MC Quick MC
Plain 17 0.893 0.900 0.843 0.842
TMR 55 0.882 0.950 0.878 0.905

Table 6. Results from larger Rtrad_gate experi-
ments

Size Fitness fham Rtrad_gate Rtrad_single

0 18 0.884 1 0.843 0
1 18 0.884 1 0.829 0
2 21 0.867 1 0.809 0
3 22 0.861 1 0.805 0
4 20 0.873 1 0.817 0
5 21 0.867 1 0.809 0
6 18 0.884 1 0.832 0
7 21 0.867 1 0.812 0
8 21 0.867 1 0.812 0
9 21 0.867 1 0.811 0

suited for evolving redundant structures and this was tried
experimentally. The fitness function applied is shown in
equation (6) and the results are shown in table 6.

f = k1 · fham + k2 · Rtrad_gate (6)

For these experiments, 100% functioning circuits are
evolved but without any redundancy (shown by the zero val-
ues in the Rtrad_single column). Instead, evolution tries its
best to make the circuit as small as possible without remov-
ing functionality.

4.6 TMR Seeded Population

If it is hard to make evolution create redundant structures
why not start at the other end and give evolution redundant
structures and let it prune them?

The TMR experiments in this paper were conducted by
seeding the starting population with one TMR-circuit. The
rest of the population was random circuits. The experiments
presented in the previous sections were rerun with TMR-
seeded populations.

When using the Rtrad_single based fitness function in
equation (1) and avoiding unreachable gates, the original
TMR structure of the seeding individual was kept. In ad-
dition, the EA introduced to the TMR circuit the kind of
structure shown in figure 2, making it score highly on fit-
ness. This experiment did however not result in anything
new or useful.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Evolving for Rehw_gate using the fitness function in
equation (5) was also tried with TMR-seeded population
and, interestingly, the TMR structure was not kept in this
case. Instead, redundancy was removed. This is most likely
caused by the fact that the quick estimator of Rehw_gate is
not favouring the TMR circuit over a non-redundant one.

When using Rtrad_gate and the fitness function in equa-
tion (6) the TMR circuit is kept without any change at all.
Evolution is unable to find any way of changing the TMR
circuit that gets better fitness, and because of elitism, the
same TMR circuit is kept as the best one.

5 Concluding Remarks and Future Work

Several different attempts at evolving redundancy struc-
tures were tried in this paper and the results illustrate the
difficulty inherent in evolving redundant structures. When
the single fault model was applied, new structures were cre-
ated that scored high on fitness, but that provided no useful
redundancy. When the gate reliability model was applied,
evolution responded by making small circuits without any
redundancy at all.

The challenge is to specify a fitness function that cor-
rectly scores high on circuits with useful redundancy struc-
tures and scores low on structures that are useless from a
fault tolerance point of view, whilst still maintaining evolv-
ability and encouraging the creation of such structures. One
approach in this paper has been to actively avoid a known
unwanted structure, only to discover that other forms of
unwanted structures were invented instead. A better way
would be to have a more general way of classifying redun-
dancy as useful or not and only including useful redundant
gates when calculating fitness. Further work will investigate
better algorithms for detecting useful redundancy.

The functionality of the evolved circuits is not the focus
herein, but the functionality may still affect how easily evo-
lution can create redundancy structures. An interesting ex-
periment would be to co-evolve the function itself together
with the reliable circuits implementing this function.

In summary this work has shown that evolution “cheats”
by avoiding the problem instead of attacking the problem
aggressively.

References

[1] Altera. Apex redundancy. http://www.altera.
com/products/devices/apex/features/
apx-redundancy.html.

[2] W. B. Culbertson, R. Amerson, R. J. Carter, P. Kuekes, and
G. Snider. Defect tolerance on the teramac custom com-
puter. In Proc. IEEE Symposium on FPGA-Based Custom
Computing Machines (FCCM), page 116, 1997.

[3] A. Djupdal and P. C. Haddow. Yield enhancing defect toler-
ance techniques for FPGAs. In FPL 2007, 2007. Submitted
to FPL 2007.

[4] A. E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. Springer, 2003.

[5] P. C. Haddow, M. Hartmann, and A. Djupdal. Addressing
the metric challange: Evolved versus traditional fault tol-
erant circuits. In Adaptive Hardware and Systems (AHS),
2007.

[6] F. Hanchek and S. Dutt. Methodologies for tolerating cell
and interconnect faults in FPGAs. IEEE Transactions on
Computers, 47(1):15–33, 1998.

[7] M. Hartmann and P. C. Haddow. Evolution of fault-tolerant
and noise-robust digital designs. IEE Proceedings - Com-
puters and Digital Techniques, 151(4):287–294, jul 2004.

[8] F. Hatori, T. Sakurai, K. Nogami, K. Sawada, M. Taka-
hashi, M. Ichida, M. Uchida, I. Yoshii, Y. Kawahara, T. Hibi,
Y. Saeki, H. Muraoga, A. Tanaka, and K. Kanzaki. Introduc-
ing redundancy in field programmable gate arrays. In Proc.
IEEE Custom Integrated Circuits Conference, pages 7.1.1–
7.1.4, 1993.

[9] H. Hemmi, J. Mizoguchi, and K. Shimohara. Development
and evolution of hardware behaviors. In Artificial Life IV:
Proc. 4th Int. Workshop Synthesis Simulation Living Syst.,
pages 371–376. MIT Press, 1994.

[10] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and
T. Furuya. Evolving hardware with genetic learning: a first
step towards building a darwin machine. In Proc. 2nd int.
conf. From animals to animats: simulation of adaptive be-
havior, pages 417–424, 1993.

[11] ITRS. International technology roadmap for semiconduc-
tors. Technical report, ITRS, 2005.

[12] I. Koren and Z. Koren. Defect tolerance in VLSI circuits:
Techniques and yield analysis. Proceedings of the IEEE,
86(9):1819–1837, sep 1998.

[13] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. Low
overhead fault-tolerant FPGA systems. IEEE Trans. Very
Large Scale Integr. Syst., 6(2):212–221, 1998.

[14] P. K. Lala. Self-Checking and Fault Tolerant Digital Design.
Morgan Kaufmann Publishers, 2001.

[15] N. J. Macias and L. J. K. Durbeck. Adaptive methods for
growing electronic circuits on an imperfect synthetic matrix.
Biosystems, 73(3):173–204, 2004.

[16] J. F. Miller. Evolving a self-repairing, self-regulating, french
flag organism. In Genetic and Evolutionary Computation
(GECCO), pages 129–139, 2004.

[17] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the
evolutionary design of digital circuits part i. Journal of
Genetic Programming and Evolvable Machines, 1(1):8–35,
2000.

[18] Xilinx. Xilinx virtex 5 overview. http://www.xilinx.
com/products/virtex5/index.htm.

[19] A. J. Yu and G. G. F. Lemieux. Defect-tolerant FPGA switch
block and connection block with fine-grain redundancy for
yield enhancement. In Proc. Field Programmable Logic and
Applications, pages 255–252, 2005.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

