
Evolving and Analysing “Useful” Redundant Logic

Asbjoern Djupdal and Pauline C. Haddow

CRAB Lab
Department of Computer and Information Science
Norwegian University of Science and Technology

{djupdal,pauline}@idi.ntnu.no
http://crab.idi.ntnu.no

Abstract. Fault Tolerance is an increasing challenge for integrated cir-
cuits due to semiconductor technology scaling. This paper looks at how
artificial evolution may be tuned to the creation of novel redundancy
structures which may be applied to meet this challenge. An experimental
setup and results for creating “useful” redundant structures is presented.

1 Introduction

As the semiconductor feature size decreases and the number of transistors on a
single chip increases, one of the growing challenges facing the electronic design
community is faulty behaviour [1]. This challenge may be met by improved fault
tolerance methods. The semiconductor fault challenge may be, in general, a long
term challenge but is here today for large ICs, like FPGAs. The mass production
of FPGAs enables FPGAs to be produced in the newest technologies. Xilinx
Virtex 5 [2] is an example of a new FPGA series from Virtex produced in 65nm
technology with up to 330,000 logic cells.

If faults are expected to occur in a digital circuit, fault tolerance — the ability
to function correctly in the presence of faults, may be achieved by incorpora-
ting redundance (additional resources) in some form. These additional resources
may be in the form of additional hardware, in which case it is called hardware
redundancy [3], the focus of this paper.

To find new redundancy techniques it is important to free oneself from the
constraints brought upon us by thinking in the way of traditional redundance
techniques. The way one thinks when designing circuits is influenced by the
way that one is taught electronics, designed electronics and the tools used in
the design process. One way of freeing oneself from these human and design
automated constraints is to search for ideas using some sort of heuristic search
process. One such process is that of evolutionary algorithms [4].

The application of evolutionary algorithms to the design of hardwares is termed
evolvable hardware [5]. The goal being, either to explore for unique solutions or to
optimise existing solutions. However, in both cases, the goal is usually to obtain a
given behaviour e.g. a binary adder [6]. Further, evolution may be applied when
seeking some sort of structure, such as evolving the french flag [7]. In both these
cases the goal may be explicitly defined and given to the evolutionary algorithm

L. Kang, Y. Liu, and S. Zeng (Eds.): ICES 2007, LNCS 4684, pp. 256–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Evolving and Analysing “Useful” Redundant Logic 257

for comparison between the evolving solutions and the sought solutions. In the
former case it is the functionality that needs to be explicitly defined whereas in
the latter case it is the structure that needs to be explicitly defined.

In this work, the goal is to push evolution to find useful redundant struc-
tures for achieving fault tolerance whilst retaining full functionality. However,
these redundant structures are unknown, unlike the case of the earlier mentioned
french flag problem. It is not possible to explicitly describe the structure that
one is seeking, only the functionality of the sought circuit — perhaps in terms
of a truth table.

Section 2 gives an overview of necessary background material. Section 3 pres-
ents relevant previous work. The experimental setup is found in section 4 with
results and discussion in section 5. The paper concludes in section 6.

2 Background

2.1 Fault Models and Simulated Faults

Two fault models are considered in this work: the gate reliability model and
the single fault model. In the gate reliability model, each gate has a certain
probability of failing. A fault scenario is one possible configuration of faulty
gates for a given circuit. If a fault scenario for the gate reliability model is to be
created, each gate in the circuit is tested against a random number generator
and selected to be faulty or not based on a chosen gate reliability. This may be
said to be a reasonable model of reality as the probability of having failing gates
in a circuit is directly proportional to the number of gates in the circuit.

In the single fault model, a circuit can have exactly one fault at any time. If
a fault scenario for the single fault model is to be created, one and only one of
the gates are selected to fail.

A failing gate can be modelled in several ways. This paper models a failing
gate by inverting its output, something that can be said to be a worst-case
scenario. Although an inverted output is not a realistic fault for a defect CMOS
gate, this fault model is useful for simulation and analysis purposes because it
ensures a wrong output for all possible input values.

2.2 Redundancy

A redundant gate in a circuit is a gate that may fail without damaging the circuits
outputs. To find if a gate in a circuit is redundant or not, a gate redundancy test
may be performed where the gate is temporarily made defect. If this does not
affect the circuit outputs, the gate is redundant. Finding all redundant gates in
a circuit involves applying the redundancy test on all gates one by one.

The ultimate goal of this work is not redundancy, but reliability. Some forms
of redundancy are known to enhance a circuits reliability, while other forms
of redundancy consist of “dead meat” that does not contribute and should be
optimised away from the circuit. In this paper the term useful redundancy is
used for redundant gates that have a useful purpose in the circuit, while fake
redundancy is used for gates that have no useful purpose.



258 A. Djupdal and P.C. Haddow

2.3 Measuring Functionality and Reliability

The functionality of a circuit is found by trying all possible input values and
recording the respective output values of the circuit. If all recorded output values
correspond exactly to the desired truth table for the function, the circuit is
working perfectly, otherwise 100% functionality is not achieved. Traditionally,
the result of such a test for functionality is either “not working” (0) or “working”
(1), referred to as fbool herein.

When using artificial evolution to create circuits, fbool is too coarse grained
to be used for guiding evolution towards a working circuit. One way of giving
evolution more information about how far an individual is from a working so-
lution, is to measure the hamming distance between the circuit output and the
desired output i.e. the number of bits that are different between these two so-
lutions. This is then normalised to the interval [0, 1] where 1 is 100% working.
This measure of functionality is called fham in this paper.

A reliability metric measures how well a circuit functions in the presence of
faults. The traditional reliability metric used in this paper is called Rtrad and is
the average of all fbool results after having tested a number of randomly selected
fault scenarios. The possible fault scenarios depend on the fault model chosen.
In this paper the traditional reliability metric Rtrad is used together with the
single fault model and is named Rtrad_single.

A reliability metric may also be based on fham and is called Rehw. Rehw is
the average of all fham results after having tested a number of randomly selected
fault scenarios.

3 Previous Work

In the earlier work of Hartmann and Haddow [8], circuits were evolved with an
Rehw based fitness function using the gate reliability model. The results provided
clear evidence that evolution traded off functionality for reliability. Instead of
making 100% functional circuits and tolerating faults using redundancy, evolu-
tion shrunk the circuits. For the gate reliability model, the probability of having
a faulty gate in a circuit is directly proportional to the number of gates in the
circuit. Evolution took the easiest path to tolerating the faults — it avoided
many of them by removing gates to a point where the circuit was no longer
100% functional. While [8] only looked at Rehw, [9] investigated and compared
both the Rehw and Rtrad reliability metrics for evolved and traditional circuits.

In traditional electronics 100% functionality is considered essential. In pre-
vious work [10] the problem of evolving 100% functional circuits with redun-
dancy was investigated. Like in this paper, reliability in itself was not the main
goal, but rather the creation of redundant structures. To ensure 100% functiona-
lity, the fitness function was designed such that fham was the only contributor to
fitness unless functionality was 100%. Thus reliability only affected fitness after
100% functionality was reached.

Several experimental setups were tried, using both the gate reliability model
and the single fault model. When using the gate reliability model, no form of



Evolving and Analysing “Useful” Redundant Logic 259

2

1

output

f

r

inputs

(a)

2 output

f

r 1

inputs

(b)

Fig. 1. Structures evolved in [10]

redundancy was achieved as the simplest solution for evolution was to minimise
the number of gates used in implementing a fully functional circuit. The single
fault model experiments on the other hand created larger circuits containing
redundant gates. It was concluded that the single fault model does not discourage
large circuits and evolution can therefore more easily introduce new redundant
structures.

The first evolved structure in [10] containing redundant gates had the form
shown in figure 1(a). The subcircuit marked f implements the desired function
and the subcircuit marked r implements any function. All gates in r are redun-
dant. The three gates in the figure makes sure that r does not have any impact
on the output at all — the output of gate 1 is constant 1 no matter what r
evaluates to. This gate is called unreachable because no input vector has any
impact on the output of the gate. This structure was evolved using the fitness
function f = k1 · fham + k2 · Rtrad_single and evolution achieved high fitness
by making r as large as possible and f as small as possible, thus scoring high
on Rtrad_single. The redundant gates in r are fake and thus not useful for any
purpose. They do not, in any way, influence the output and could just as well
be removed.

One way of avoiding the structure in figure 1(a) is to detect unreachable
gates. This was also tried in [10]. Any subcircuit with unreachable gates as
the only outputs can be excluded when Rtrad_single is calculated. In this way,
such structures do not contribute to fitness, i.e. Rtrad_single and evolution is
encouraged to find another way to improve fitness. The result is typically a
structure as in figure 1(b). Here there are no unreachable gates but the redundant
gates in r are still just as “useless” for the same reason: r contains only fake
redundancy and could just as well be removed from the circuit without affecting
functionality or reliability.

The work in [10] managed to create several circuits with redundant gates.
However, the method used did not manage to evolve any circuits with useful
redundancy. It was concluded that evolution chooses the easiest way to solve
the problem, and the easiest way in the experimental setup in [10] was fake
redundancy. When the fitness function is not good enough at separating circuits
with useful redundancy from circuits with fake redundancy, the result is large
amounts of fake redundancy and no useful redundancy. The goal of this paper
is to tune the evolutionary process further in order to be able to evolve useful
redundancy.



260 A. Djupdal and P.C. Haddow

outputinputs X

Y g

Fig. 2. Circuit partition after selecting any gate g

4 Experiments

This paper builds on the lessons learned in [10]. In [10], a fitness function using
Rtrad_single seemed most promising with regard to introducing redundancy and
Rtrad_single is therefore chosen in this paper.

A key point for improving on the previous experiments is to correctly sepa-
rate useful redundancy from fake and only include useful redundant gates when
Rtrad_single is to be calculated. Detecting known unwanted structures, like the
unreachable gate subcircuits in figure 1(a), is not the answer. Experiments in [10]
show that evolution is only going to come up with new ways of cheating by in-
troducing new forms of fake redundancy.

The solution chosen in this paper is to use a more general way of classifying
redundancy as useful or fake. Instead of detecting unwanted structures, a gate is
simply classified as useful redundant if it has some observable influence on the
circuits output. More specifically, a gate is said to be useful redundant if, when
the gate becomes defect, some other redundant gate becomes non-redundant in
order to maintain correct circuit functionality.

4.1 Algorithm for Classifying Redundant Gates

Algorithm 1, FindFake, is a heuristic for classifying the redundant gates in a
given circuit as being either useful redundant or fake redundant. The algorithm
works on a given circuit. First, all redundant gates are marked as useful red-
undant. Then a gate g is selected. For the selected gate g, the circuit can be
partitioned into two sets of gates X and Y , both of which may be the empty
set, as shown in figure 2. The gates in Y can be disconnected from the circuit
by changing the chosen gate g to either V cc or Gnd, both of which are tried. If
this change does not damage the output of the circuit, the number of redundant
gates in X after the change is compared to the number of redundant gates in
X before the change. If the number of redundant gates in X is unchanged, the
gates in Y have no impact on the output and are useless. They are then marked
as fake. This is repeated for all the gates in the circuit.

4.2 Rtrad_single Based on Measured Redundancy

A measure like Rtrad_single depends on the function the circuit is supposed to
perform — Rtrad_single is 0 when functionality is not 100%. To encourage red-
undancy early during evolution, before the individuals reach 100% functionality,



Evolving and Analysing “Useful” Redundant Logic 261

Algorithm 1. Classifying redundant gates as useful or fake
1: procedure FindFake(circuit)
2: markAllRedundantGatesAsUseful
3: for all gates g do
4: partitionCircuit(X, Y, g) � Find gate sets X and Y given g
5: redundantInX ← numberRedundant(X)
6: g ← vcc � Disconnect Y by substituting g with Vcc
7: if outputsUnchanged then � If circuit is still working
8: redundantV cc ← numberRedundant(X)
9: if redundantInX ≥ redundantV cc then

10: markAsFake(Y)
11: end if
12: end if
13: g ← gnd � Disconnect Y by substituting g with Gnd
14: if outputsUnchanged then
15: redundantGnd ← numberRedundant(X)
16: if redundantInX ≥ redundantGnd then
17: markAsFake(Y)
18: end if
19: end if
20: restoreCircuit � Change circuit back to the original
21: end for
22: end procedure

the current behaviour of the individual is measured. The measured behaviour is
then used when calculating Rtrad_single instead of the desired target behaviour,
resulting in a score for Rtrad_single even when 100% functionality is not reached.

4.3 Experimental Setup

All experiments are conducted on simulations of circuits in a digital feed for-
ward circuit simulator. Only Boolean logic is allowed and the following gates are
available: AND, OR, NAND, NOR, NOT. Cartesian genetic programming [11]
is applied with the following GA parameters:

– Maximum number of gates: 100
– Population size: 20
– Tournament selection with elitism (g = 3, p = 0.7)
– Crossover rate: 0.2
– Mutation rate: 0.05 (mutation applied at the gate level)

The experiments in this paper use the single fault model. The algorithm explai-
ned in section 4.1 classifies redundant gates as either useful or fake and only useful
redundant gates are included when Rtrad_single is calculated. Rtrad_single is cal-
culated based on the current measured behaviour and not the target behaviour.



262 A. Djupdal and P.C. Haddow

Evolving function and redundancy at the same time. For experiments evol-
ving functionality and redundancy at the same time, the following fitness function
is used:

f1 = 0.7 · fham + 0.3 · Rtrad_single (1)

Three sets of experiments are performed using the fitness function in equa-
tion (1), differing in target functionality: Two input AND, two input OR and two
input XOR.

Evolving function first, then redundancy. If 100% functionality is required
before evolving redundancy, the following fitness function is used:

f2 = 0.7 · fham + 0.3 ·
{

0 if fham < 1.0
Rtrad_single if fham = 1.0 (2)

The fitness function in (2) is used when evolving CIR4, a four input one output
function with the truth table “1001011101100110” (bit zero to the right)

Evolving with unspecified function. If the target functionality is not speci-
fied but instead evolved together with the circuits, the following fitness function
is used:

f3 = Rtrad_single. (3)

5 Results and Discussion

The results and their discussions are separated into three subsections, based on
the complexity and type of target behaviour.

5.1 Simple Functionality

The chosen functionality for the simple experiments is a two-input Boolean func-
tion that can be implemented with a single gate circuit. Both AND2 and OR2
have been tried. The reason for evolving these very simple functions is to see what
redundancy structures emerge when the function requires little effort to evolve.

Table 1 shows the best individuals after running ten independent experiments
for both AND2 and OR2. The best results from these experiments all have the
same basic idea behind the introduced redundancy: a voter structure similar to
figure 3(a) is introduced just before the output of the circuit. Four independent
circuit modules are connected to this voter that all perform the desired function.
If three of the four modules work correctly, the voter outputs the correct value.
This voter structure is created by the evolutionary algorithm to solve the problem,
nothing in the experimental setup predefines a voter as the preferred result.

This design may be compared to the most well known traditional fault tole-
rance method, Triple Modular Redundancy (TMR), that has three modules and
a majority voter. It is interesting to see that evolution in fact finds a voter as the



Evolving and Analysing “Useful” Redundant Logic 263

Table 1. Results, simple functionality. “Type” indicates redundancy type: voter or so-
mething else. “Red.” is the number of redundant gates. “Non-red.” is the number of non-
redundant gates.

(a) AND2

# Type Red. Non-red.
0 Voter 23 3
1 Voter 32 3
2 33 5
3 37 7
4 50 4
5 Voter 39 3
6 Voter 40 3
7 Voter 38 3
8 35 5
9 23 7

(b) OR2

# Type Red. Non-red.
0 18 7
1 Voter 21 3
2 Voter 38 3
3 Voter 17 3
4 Voter 28 5
5 23 5
6 33 6
7 Voter 29 4
8 33 6
9 29 5

best solution. Of all the possible solutions that evolution could have found it chose
something close to the traditional solution. The evolved voter is smaller than the
TMR-voter (three gates as opposed to four), but needs more working modules.
This is no disadvantage when simulating using the single fault model, in fact a
three-gate four-input voter is the best solution in this case. In the more realistic
gate reliability model, TMR is better as it requires fewer gates in total and, the-
refore, has fewer gates that may fail.

It is also clear from table 1 that when evolution has managed to create redun-
dancy, the redundant subcircuits are expanded. This can be explained by the use
of the single fault model. It is favourable for fitness to have as many redundant ga-
tes as possible because Rtrad_single is the same as the number of redundant gates
divided by the total number of gates.

Analysis of Evolved Voter. Why is the voter structure in figure 3(a) successful
at hiding single defects in the modules connected to the voters inputs? The voter
can be explained by doing a don’t care (DC) analysis of the circuit.

If one input to an AND-gate is zero, the other input is DC because no matter
what it is, the output of the AND-gate is zero. Likewise, if one input to an OR-gate
is one, the other input is DC. In addition, an input DC is in most cases propagated
to the subcircuit connected to this input, meaning that all gates in the subcircuit
have a DC for this specific case. This is not true for all possible circuits, but is true
for the voter in figure 3(a).

These simple rules cannowbeused to explain thevoter.All fourmodules connec-
ted to the voter should perform the same function, so every wire in figure 3(a) has
the same value. The purpose of the voter is to make sure that any single fault in
any of the modules is tolerated. The voter should therefore be designed such that if
any three of the four inputs to the voter is correct, the fourth input is DC. To see if
the voter fulfils this requirement, one should separately examine the two possible



264 A. Djupdal and P.C. Haddow

module

module

module

module

(a)

module

module

module

module

00

0

DC

DC

0

DC

(b)

module

module

module

module

1

11

1

DC

DC 1

(c)

Fig. 3. Evolved voter

cases of voter operation: When the voter output should be zero, and when the voter
output should be one.

Zero-case: This case is illustrated in figure 3(b). When the result of the voter
should be zero, only one input to the AND-gate of the voter needs to be zero. This
means the other input and both modules that are indirectly connected to the input
are DC.

One-case: This case is illustrated in figure 3(c). When the result of the voter
should be one, both inputs to the AND-gate must also be one. This case must
therefore be handled by the OR-gates. For each of the OR-gates to output one,
only one of the inputs to each OR-gate needs to be one. This means the other
input and the module connected to it are DC.

These two cases show that the voter outputs the correct value even when one of
the four modules connected to the voter fails. Note the symmetry in figures 3(b)
and 3(c). For example in figure 3(b), it is just as correct to mark the lower two
modules having a DC output and the upper two modules having output 0. It can
now be seen that if a single module is selected as faulty, if the three other modules
work correctly the output will still be correct.

5.2 Complex Functionality

If the functionality of the circuit is more complex it becomes harder to evolve a
functional circuit.Howdoes this affect the redundancy structures that are evolved?

XOR2 is a step up in functionality. XOR is not among the gates available for
evolution and requires minimum a three gates implemention. In the XOR-case
evolution has a much harder time finding a solution as efficient as the voter in
figure 3(a). Table 2(a) shows the best individuals after running ten independent
experiments for XOR2. The same kind of voter was observed in one of the evolved
XOR-circuits, but mostly functionality and the structures used for introducing
redundancy in the circuit were mixed together in an intricate way. An example of
this is given later in this section.

The most complex functionality evolved in this paper is the four-input CIR4
circuit that requires a nine gate minimum implementation. To ensure 100% func-
tionality, it was necessary to apply the fitness function in equation (2) that forces
evolution of functionality first and then redundancy. Table 2(b) shows the best



Evolving and Analysing “Useful” Redundant Logic 265

Table 2. Results, complex functionality. Same layout as in table 1.

(a) XOR2

# Type Red. Non-red.
0 22 6
1 38 8
2 19 10
3 22 6
4 (not working)
5 32 7
6 Voter 43 3
7 19 10
8 42 11
9 36 7

(b) CIR4

# Type Red. Non-red.
0 17 13
1 24 21
2 24 15
3 21 16
4 11 14
5 24 15
6 25 18
7 15 17
8 18 13
9 32 16

1100

1100

0100

1100

in1

out

in

in

A
B

in0

in0
in

in in0

Fig. 4. Redundant XOR2 without voter. IN0 and IN1 are the main circuit inputs

individuals after running ten independent experiments for CIR4. In this case
there are no voters evolved and like most of the XOR2 evolutionary runs, func-
tionality and redundancy are mixed together. As can be seen from the number
of non-redundant gates in the evolved circuits, the introduced redundancy is not
very efficient.

Although not as efficient as the voter solutions, these solutions are still inte-
resting. The purpose of this work is not to evolve the voter but to find new ways
of introducing redundancy to a circuit. The solutions in table 2 do represent new
redundancy solutions. The inefficiency might come from the fact that the fitness
function forces 100% functionality before redundancy. The evolutionary runs were
also stopped after a certain amount of time. More efficient redundancy might have
been the result if the experiments were allowed to run longer.

Example of Non-Voter Based Redundant Circuit. What does a non-voter
based redundant circuit look like? An example of such a circuit is the XOR circuit
number nine in table 2(a). This circuit is illustrated in figure 4. The four rounded
boxes are subcircuits having the truth table written inside the box (bit zero to the



266 A. Djupdal and P.C. Haddow

Table 3. Results, evolving function together with redundancy. Same layout as in table 1,
with the addition of column “Function” which is the evolved functionality. IN0 and IN1
are the circuit inputs.

# Function Type Red. Non-red.
0 IN0 Voter 28 3
1 ¬ IN0 39 5
2 AND 23 4
3 ¬ IN1 (Voter) 32 3
4 IN1 Voter 59 3
5 IN0 Voter 28 3
6 IN0 49 5
7 IN1 Voter 40 3
8 ¬ IN1 Voter 17 3
9 IN1 Voter 31 3

right). All gates in region A (to the left of the dotted line) are redundant while all
gates in region B are non-redundant.

The redundant gates in figure 4 are useful redundant, they do have an impact on
the circuit output. The XOR functionality is, however, not produced exclusively
in the redundant part of the circuit. None of the rounded boxes in the redundant
part of the circuit represent XOR. Instead, XOR is formed with a combination of
the redundant and non-redundant gates. An analysis similar to the DC analysis
for the voter in section 5.1 can be used to understand why the gates in region A
are redundant.

5.3 No Specified Functionality

From the previous experiments in this paper it is clear that functionality affects
how redundancy is achieved and how effective this redundancy is. As the comple-
xity of the functionality increases, more focus is placed on getting a circuit working
and it becomes harder to find an efficient way of creating a redundant version of
the circuit.

The evolved redundancy structures are the goal for this paper, not a specific
functionality. A set of experiments are performed that does not explicitly state
what function the evolved circuits should perform. The only requirement is that
the circuit must have two inputs and one output. Evolution is thus free to create
any function and focus all efforts on creating circuits with redundancy. This is
accomplished by using the fitness function in equation (3). As Rtrad_single is the
only factor in this fitness function and because Rtrad_single is based on the current
measured functionality of an individual, the target functionality of the circuits is
evolved together with the redundant circuits themselves. It is likely that the re-
sulting function is something that can easily be made redundant in an efficient
way. This is backed up by the results. Table 3 shows the best individuals after
running ten independent experiments where the target functionality is not spe-
cified. The evolved functions are very simple (typically cloning an input or being



Evolving and Analysing “Useful” Redundant Logic 267

the equivalent of a single Boolean gate) and most individuals use a voter similar
to figure 3(a).

6 Conclusion and Further Work

This paper has presented an experimental setup that sucessfully uses artificial evo-
lution to create digital circuits with useful redundancy. The purpose of this expe-
rimental setup is to find new ways of building redundant circuits.

The results show that although there is no explicit guiding towards creating a
voter structure, evolution does in some cases create a voter resembling the voter
used in traditionally designed reliable circuits. This is typically the result when
evolving circuits with simple functionality. The voter is a known way of making
redundant structures and while it is interesting that evolution creates voter like
structures, the main goal is to find new ways of introducing redundancy. When
evolving more complex functions, the result is non-voter based redundancy. Alt-
hough not as efficient as a voter based solution, these results are interesting ex-
amples on how to do redundancy without the traditional voter.

Planned further work includes experiments where evolution is allowed to leave
the strict Boolean logic domain and exploit the analog properties of the CMOS
technology.

References

1. ITRS: Int. techn. roadmap for semiconductors. Technical report, ITRS (2005)
2. Xilinx: Xilinx virtex 5 overview. http://www.xilinx.com/virtex5
3. Lala, P.K.: Self-Checking and Fault Tolerant Digital Design. Morgan Kaufmann

Publishers (2001)
4. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)
5. Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving hard-

ware with genetic learning: a first step towards building a darwin machine. In: Proc.
Int. Conf. From animals to animats: simulation of adaptive behavior. (1993) 417–
424

6. Hemmi, H., Mizoguchi, J., Shimohara, K.: Development and evolution of hardware
behaviors. In: Artificial Life IV: Proc. 4th Int. Workshop Synthesis Simulation Li-
ving Syst., MIT Press (1994) 371–376

7. Miller, J.F.: Evolving a self-repairing, self-regulating, french flag organism. In:
Genetic and Evolutionary Computation (GECCO). (2004) 129–139

8. Hartmann, M., Haddow, P.C.: Evolution of fault-tolerant and noise-robust digital
designs. IEE Proc. - Computers and Digital Techniques 151(4) (jul 2004) 287–294

9. Haddow, P.C., Hartmann, M., Djupdal, A.: Addressing the metric challange: Evol-
ved versus traditional fault tolerant circuits. In: Adaptive Hardware and Systems.
(2007)

10. Djupdal, A., Haddow, P.C.: Evolving redundant structures for reliable circuits –
lessons learned. In: Adaptive Hardware and Systems. (2007)

11. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital
circuits Â part i. Journal of Genetic Programming and Evolvable Machines 1(1)
(2000) 8–35

http://www.xilinx.com/virtex5

	Evolving and Analysing “Useful” Redundant Logic
	Introduction
	Background
	Fault Models and Simulated Faults
	Redundancy
	Measuring Functionality and Reliability

	Previous Work
	Experiments
	Algorithm for Classifying Redundant Gates
	Rtrad_single Based on Measured Redundancy
	Experimental Setup

	Results and Discussion
	Simple Functionality
	Complex Functionality
	No Specified Functionality

	Conclusion and Further Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




