Analysis of Survival Times Using Bayesian Networks

Helge Langseth

Presented at ESREL ‘98
Trondheim, Norway, 16-19 June 1998
Two types of statistical models

Neyman categorises statistical models into two groups:

• **Interpolating models**
 Used merely to capture rough effects in the data

• **Explorative models**
 Used to explore the underlying process which generates the data we have observed
Scope

With a database as a starting point, we want to build an explorative model to pinpoint how to reduce the rate of critical failures in a system components.

Our main goal is to build a model to gain understanding about how the covariates contribute to the system’s survival times.
The History of Graphical Models

- Graphical models in statistics can be dated back to Wright’s notation in 1921.
- The calculation complexity did however, render the Bayesian Networks neglected for 60 years.
- In the 1980’s, effective algorithms for exact calculations on graphs, and later on computer intensive methods like Markov-Chain Monte-Carlo brought the Bayesian Networks back into the light, and up on the *Top 5 Statistical Buzz-Word of the Week.*
Bayesian Networks

- Age
- Gender
- Exposure To Toxic
- Smoking
- Cancer
- Serum Calcium
- Lung Tumour
Cancer is independent of Age and Gender given Exposure To Toxic and Smoking.
“Fundamental Theorem”

Every multidimensional statistical distribution function can be represented by a Bayesian Network.

\[f(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} f(x_i \mid x_1, x_2, \ldots, x_{i-1}) \]

\[= \prod_{i=1}^{n} f(x_i \mid "\text{All predecessors}") \]
Nodes are Probability Tables

<table>
<thead>
<tr>
<th>Exposed To Toxic Material</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>In (25,65)</td>
<td>Not In (25, 65)</td>
</tr>
<tr>
<td>True</td>
<td>5 %</td>
</tr>
<tr>
<td>False</td>
<td>95 %</td>
</tr>
</tbody>
</table>
Where do the Networks come from?

Situation:
We want to build a model to analyse a multidimensional vector X.

Aid:
To do so, we have N i.i.d. realisations of X, x_1, ..., x_N
AND / OR
a domain expert.

Unknowns:
- The network structure
- The parameters in the local node tables
Generating Networks:

- **Initialize Network**

repeat

- Propose some Change to the structure
- Fit Parameters to the new structure
- Evaluate the new network according to some measure (like BIC, AIC, MDL)
- If the New network is Better than the previous, then Keep the Change

until Finished
Bayesian Networks are used in:

- In “expert systems”, mostly in medical domains (e.g. the *MUNIN* system)
- In decision support systems (e.g. for *NASA*)
- In analysis of dynamic systems (e.g. speech recognition, the *BAT-Mobile*)
- …
Bayesian Networks, Summary:

- An estimate of the multidimensional density
- Easy to understand for non-statisticians (e.g. a domain expert)
- The representation is optimized for tasks like
 - Prediction
 - Classification
 - Decision support
- Can incorporate prior domain knowledge:
 - “Top down analysis”: Expert knowledge
 - “Bottom up” analysis: Data driven system verification
Reliability Analysis

- Data-set: 219 Gas-Turbines with 2921 failures and 300 censored survival times from the OREDA-IV database
- Each failure is described by ten covariates, e.g., System Type, Manufacturer, Actual/Planned PM,…
- We have special interest in Time To Fail and Failure Severity (Critical or Degraded)
- Problem to solve: “How can we reduce the frequency of critical failures?”
Generated Network
“Clique” Graph

Location: Installation Code Location
System: System Code Operating Mode Manufacturer
PM: Planned PM Actual PM
Environment: Installation Code Environment System Code Design Class
Model Verification
Conclusions

• We have generated a Bayesian Network to analyse a data-set from the OREDA IV database.

• The Bayesian Network enabled both Qualitative and Quantitative analysis of the data-set.

• To verify the calculations, the numerical results were compared to those found by Cox regression. The results of the two methods were at the same level.