WORKFLOW PARTITIONING IN MOBILE INFORMATION SYSTEMS
L. Baresi, A. Maurino, S. Modafferi
Politecnico di Milano

Andrea Maurino
maurino@elet.polimi.it
Outline

- Motivation
- Our proposal
- Graph transformation
- Partitioning rules
- Local process view
- Validation
- Example
- Conclusions and future work
Motivation

- New wireless technologies are creating the technological backbone for MobIS
 - Nomadic actors
 - Dynamic changes
- New technologies suffer from several problems
 - Reduced number of nodes connected (e.g. Piconet)
 - Lack of inter-networking protocols
 - Lack of efficient routing protocols
- The nature and the limitations of these technologies impact the design of MobIS
Our proposal

- Move from centralized to decentralize process orchestration
- Federation of heterogeneous devices
- Creation of a set sub-network
 - Based on single network technology
 - With a reduced number of nodes
- From one-to-any to point-to-point communication
 - Only when it is necessary
Main problems:

- How to describe such processes
 - BPEL4WS
- How to decompose centralized processes maintaining the correct execution flow
 - Special synchronization activities
- How to automatically decentralize a process
 - Graph transformation
 - AGG tool
Graph Transformation
Graph Transformation

1: Container
weight/t = x

2: Truck
load/t = 0

3: Store
containers = y

5: in front of

1: Container
weight/t = x

2: Truck
load/t = x

3: Store
containers = y \cdot 1

5: in front of
Graph Transformation
Partitioning rules

- To decompose a BPEL process we transform the XML description of bpel into a graph by means of the IBM UML profile
- Each UML basic activity is rendered as a node
 - Each node has a device attribute
- Links are rendered as edges of type FOLLOW between activities
- Structured activities are rendered with two special-purpose Activity nodes.
Partitioning rules

- The designer must assign all activities to controllers
 - The control of the execution of a specific activity can be assigned to a single device;
 - The **StartLoop** and **EndLoop** nodes of While structured activities must be assigned to the same device.
 - The **Start** node of Pick, Switch, and While structured activities is in charge of evaluating the condition.
 - The workflow has no global variables and all the variables are passed as parameters among different actors.
Partitioning rules

- We organize rules into layers
 - A rule of layer i is evaluated before rules of layer j with i < j
- Level 0: synchronize the execution flow between activities
Partitioning rules

- We organize rules into layers
 - a rule of layer i is evaluated before rules of layer j with $i < j$
- Level 0: synchronize the execution flow between activities
Partitioning rules

- We organize rules into layers
 - A rule of layer i is evaluated before rules of layer j with i < j
- Level 0: synchronize the execution flow between activities

Right side
Partitioning rules

- Layer 1 identifies switch nodes
Partitioning rules

- Layer 2 adds isSwitched arcs to all nodes involved within the switch

- Partitioning of while activity
Partitioning rules

- Layer 3 fills the added flow activities

- The last set of rules (layer 4) removes the extra arcs added previously
Local process view

- Next step: creation of the local views for decentralizing the workflow execution
- The definition is realized by the following rules
 - Remove all activities whose execution is not controlled by the current actor
 - Translate all structured activities, with the exception of Sequences, that do not include "local" activities into Sequences with no tasks
Partitioning rules have a functional behaviour are confluent and terminates

- OK, by critical pair analysis offered by AGG tool
 - There exists a critical pair if and only if p1 may disable p2, or p2 may disable p1
- We do not find any critical pair so it is demonstrated that our partitioning rules have a functional behaviour

- The execution of the original workflow is preserved.
 - Empirical positive responses
Validating example

- In 1990 the Italian government started the MARIS project, but it does not foresee the data acquisition phase by means of mobile devices.
- We want to create a mobile information system able to acquire information of goods in an electronic way:
 - In fact a number of “small” goods are placed in non urban contexts (e.g. country, mountain and so on).
 - The use of mobile devices and networks is mandatory in this environment.
Validating example

- Our process is the description of a given cultural site through a site description card
- The card is composed of a number of items
 - according to the specificities of what is described
- First we define the AGG graph
 - XML representation
- Then we apply our rules
Validating example
Validating example
Validating example

Communication of switch
Validating example

Communication of while
Validating example
Conclusions and future work

- Use of graph transformation system to decompose a workflow specification
 - AGG tool
 - We partially demonstrated that our rules preserve the behaviour of workflow execution
 - Validation through examples

- Future Work
 - Complete the demonstration
 - Transactional behaviour
 - Complete tool support