Semantics of ARIS Model

Jon Atle Gulla

An analysis of the ARIS modeling language with respect to:
- conceptual foundation and
- formal properties

van der Aalst, W. M. P.: Formalization and Verification of Event-Driven Process Chains

Semantics of ARIS model

Why is Semantics Important?

Conceptual model is the bridge between:
- customer and project
- domain experts and analysts
- analysts and designers/programmers
- people and CASE environments
- project and end-users

Why is Semantics Important?

Outline

- ARIS modeling
 - ARIS conceptual model
 - Interpretation of ARIS models
- Analysis with respect to ontological foundation
 - BWW ontological model
 - Mapping of ARIS model to BWW ontological model
- Formalization of ARIS process model (EPC) using Petri nets
 - Formalization of EPC process model
 - Petri nets
 - Mapping from EPC to Petri nets
 - Verification of EPCs

I. ARIS Conceptual Model

- Multi-view conceptual language for modeling business processes and organizational structures
 - Organizational view
 - Function view
 - Data view
 - Control view
 - (Output view)
- Pre-defined models for ERP functionality
 - Low-level processes correspond to specific transactions in ERP system
 - Organizational structures correspond to structural elements in ERP system

I. ARIS Conceptual Model

ARIS Organization view

- Model of organizational units and positions/employees that are important for reporting purposes, areas of responsibilities and user profiles in ERP system

ARIS Function view

- Hierarchical list of manual and automated functions included in the business processes

ARIS and ERP Systems
ARIS and ERP Systems

Interpretation of ARIS Models

- How to analyze semantic aspects of a conceptual model?
 ✔ Can map model to (other) formal models
 ✔ Can define model with respect to mathematical or logical theory
 ✔ Can map model to ontological theory of information systems
 ✔ Mapping to computerized system introduces implementation details that do not belong to conceptual realm

BWW Ontological Constructs

- Ontological constructs for describing deep structure phenomena of information systems:

II. BWW Ontological Model

- Introduced by Bunge, Wand and Weber

- Nature of ontological model:
 ✔ Deep structure of information systems comprises those properties that manifest the meaning of the underlying real-world system
 ✔ Ontological model describe and predict the impact of deep structure phenomena

- Components of ontological model:
 ✔ Representation model
 ✔ State-tracking model
 ✔ Good decomposition model

- Purpose of ontological model:
 ✔ Study of internal structures of information systems that are independent of implementation decisions
 ✔ Theoretical foundation for designing and evaluating modeling languages
 ✔ Comparison of conceptual modeling languages

Ontological Analysis of ARIS

- Table showing analysis of ARIS model components.
Ontological Weaknesses of ARIS

- No representation for conceivable state space, lawful state space, conceivable event space, or lawful event space
- Sufficient focus on identifying all important state and transformation laws may not be present
- No representation of system, system environment, system structure, history, acts on, unstable state, and poorly defined event
- Defining scope and boundaries of system may be difficult
- Decomposition not sufficiently supported
- Function view ontologically redundant

III. Formalization with Petri nets

- Event-driven Process Chains (EPC)
 - Process model (control view) of ARIS
 - Used to describe business processes
- Formalization of EPC syntax
 - Mapping EPCs onto Petri nets
 - Provides a formalization of EPC
 - Defines the semantics of EPC
 - Enables checks for consistency, completeness, soundness, etc.

The Structure of EPC Models

Formalization of EPC Syntax

- EPC = (E, F, C, T, A):
 - E is a finite set of events
 - F is a finite set of functions
 - C is a finite set of logical connectors
 - T is a function which maps each connector onto a connector type
 - A is a set of arcs

Syntactic properties:
- The sets E, F, and C are pairwise disjoint
- For each e ∈ E: |•e| ≤ 1 and |e•| ≤ 1
- There is at least one start event and one final event
- For each f ∈ F: |•f| = 1 and |f•| = 1
- For each c ∈ C: |•c| ≥ 1 and |c•| ≥ 1
- The graph induced by EPC is weakly connected
- C
c
 - The graph induced by EPC is weakly connected
 - C
c

Petri nets - Basics

- Petri nets are a tuple (P, T, F):
 - P is a finite set of places
 - T is a finite set of transitions (P T =)
 - F is a set of arcs (flow relations)
- Petri nets have a mathematical foundation
- Formal semantics
- Automatic model analysis

Petri nets - Dynamics

- Tokens:
 - A place contains zero or more tokens
- Firing rule:
 - A transition τ is said to be enabled if each input place p of τ contains at least one token
 - An enabled transition may fire. If transition τ fires, then it consumes one token from each input place p of and produces one token in each output place p of τ
- State M:
 - Distribution of tokens over places
 - M

Example: State M = p1 = 2p3
- Transition τ1 is enabled, τ3 is not enabled
Formalization of EPC Semantics

- Defining EPC semantics in terms of Petri nets
- Basic mapping of EPC to Petri nets:
 - Place
 - Transition

- Mapping of connectors more complex
 - Depends on type of connector
 - Depends on events and/or functions linked to connector

Mapping from EPC to Petri nets

Verifications of EPC Models

- Regular:
 - An EPC is regular if
 - EPC has two special events: start and end
 - Every node in N is on a path from s_{start} to s_{end}

- Sound:
 - A regular EPC is sound if
 - For every state M reachable from the initial state, there exists a firing sequence leading from state M to the final state
 - The final state is the only state reachable from the initial state where s_{end} holds
 - There are no dead functions

- Well-structured
 - An EPC is well-structured if for any pair of connectors c_1 and c_2 such that one of the nodes is in CON and the other in CR,
 - For any pair of elementary paths p_1 and p_2, leading from c_1 to c_2 and from c_2 to c_1, $p_1 = p_2$

An erroneous EPC (1)

Model not sound:
- Assume that no billing needed event holds.
- Produce article will never be fired

ARIS and ERP Systems
An erroneous EPC (2)

Two models to the right are not well-structured

Conclusions

- ARIS rooted in informal modeling languages
- Semantic analysis of ARIS
 - BWB ontological model
 - Evaluation of modeling language with respect to deep structure of information systems
 - Petri nets
 - Formalization of EPC semantics by mapping EPC diagrams to Petri nets