A Semiotic Approach to Quality in Requirements Engineering

Presented at
IFIP WG 8.1 Conference on Organizational Semiotics
Montreal July 2001
John Krogstie
SINTEF and IDI, NTNU

Agenda

- Background on requirements specification
- Overview of model quality framework
- Specialization of the framework for requirements specification models
- Summary

Background on requirements specification

- Specify what a system is to do, not how (which is design)
- Look at the externally observable behavior of the system
- Typically documented as a combination of graphical models and structured text including both functional and non-functional requirements
 - Security
 - Dependability
 - Usability
 - Performance
 - Maintainability
 - Portability

Properties of a requirements specification (Davis)

- Unambiguous
- Complete
- Correct
- Understandable
- Verifiable
- Internally consistent
- Externally consistent
- Achievable
- Concise
- Precise
- Design-independent
- Traceable
- Modifiable
- Electronically stored
- Annotated by relative importance
- Annotated by relative stability
- Annotated by version
- Not redundant
- At right level of detail
- Cross-referenced
- Reusable
- Traced
- Organized

Model quality framework

- For (information systems) models in general
- Differentiate quality levels of a model in a way that coincide with the semiotic levels
- Quality levels related
- Differentiate between quality goals and means to support these goals
- Set-oriented definitions of the quality levels

Model of the quality framework
Model of the quality framework

Language quality
- Domain appropriateness
- Participant language knowledge appropriateness
- Knowledge externalizeability appropriateness
- Comprehensibility appropriateness
- Technical actor interpretation appropriateness
- Conceptual basis: Meta-model
- External representation: Notation

The domain of a requirements specification
- Primary domain: e.g., requirements to a system in the banking domain
- Pre-existing context: Constraints on the model because of earlier baselined models - e.g., Business requirements: We are to provide self-service to our customers for managing changes to their own accounts
- Purpose context: Constraint due to the fact that the model is to be the basis of a technical implementation - e.g., the service must be available over internet using standard web browsers in 3 months

Physical quality
- Davis: Electronically stored
 - Externalization: \(K_{MD}(M, D) = 0 \)
 - Language quality aspects
 - Domain appropriateness
 - Participant language knowledge appropriateness
 - Knowledge externalizeability appropriateness
 - Language extensions
- Internalizeability
 - Persistence
 - Availability
 - repository functionality

Empirical quality
- Davis: Understandable
 - Empirical quality of a model is about
 - Ergonomics
 - Graph and document layout
 - Readability
 - Language quality
 - Comprehensibility appropriateness
 - Expressive economy
 - Modeling activities
 - (Automatic) graph-layout, readability index for textual models, evaluating the use of color etc.
Syntactic quality

- Not mentioned by Davis
 - Syntactic correctness: $ML = \emptyset$
 - Two types of errors
 - Syntactic invalidity
 - Syntactic incompleteness
- Language quality
 - Formal syntax
- Modeling activities
 - Error prevention
 - Error detection
 - Error correction

Semantic quality

- Goal
 - Validity: $MD = \emptyset$
 - Completeness: $DM = \emptyset$
- Language quality
 - Formal (mathematical) semantics, analyzability
- Modeling activities
 - Model testing (consistency checking)
 - Model reuse
 - Driving questions

Semantic quality relative to the primary domain

- Complete (= complete)
- Correct (= valid)
- Internal consistency (valid + complete)
- Precise
 - Use of numerical quantities (vs. completeness)
 - Granularity vs. completeness and validity

Semantic quality relative to pre-existing context

- Traced (Complete)
-Externally consistent (Complete + valid)

Semantic quality relative to purpose context

- Annotated by priority (completeness)
- Annotated by stability (completeness)
- Annotated by version (completeness)
- Traceable (completeness)
- Verifiable (completeness)
- Achievable (validity)
- Design-independent (validity)
- Unambiguous (completeness and validity)
- Other means
 - Modifiability, non-redundant, use of formal languages, 'proof-of-concept' prototyping, preliminary design and test modeling

Pragmatic quality

- Davis: Executeability, interpretability, basis for prototyping, organized, cross-referenced
- Goal: Comprehension (I=M)
- Language quality
 - Operational semantics, executeability
- Other modeling activities: Inspection, visualization, filtering, explanation generation, simulation, animation, report generation
Social quality

Not mentioned by Davis
- Goal: Agreement
- Language properties: Possible to express inconsistencies
- Modeling activities:
 - Model integration
 - Conflict resolution

Summary

- Davis surprisingly weak on technical aspect
 - Physical, empirical, syntactical
- Davis extends our coverage of semantic quality
- Davis weak on pragmatic and social quality
- The work is connected to a general process description for modeling, specialized for the development of requirements specifications

A Semiotic Approach to Quality in Requirements Engineering

24/7-2001
John Krogstie
SINTEF and IDI, NTNU