ABSTRACT

This paper addresses the problem of efficiently computing the skyline set of a relational join. Existing techniques either require to access all tuples of the input relations or demand specialized multi-dimensional access methods to generate the skyline join result. To avoid these inefficiencies, we introduce the novel SFSJ algorithm that fuses the identification of skyline tuples with the computation of the join. SFSJ is able to compute the correct skyline set by accessing only a subset of the input tuples, i.e., it has the property of early termination. SFSJ employs standard access methods for reading the input tuples and is readily implementable in an existing database system. Moreover, it can be used in pipelined execution plans, as it generates the skyline tuples progressively. Additionally, we formally analyze the performance of SFSJ and propose a novel strategy for accessing the input tuples that is proven to be optimal for SFSJ. Finally, we present an extensive experimental study that validates the effectiveness of SFSJ and demonstrates its advantages over existing techniques.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

General Terms
Algorithms, Experimentation, Performance

Keywords
Skyline query, join operator

1. INTRODUCTION

In this paper, we propose a novel algorithm for efficiently computing the skyline set of a join $R_1 \bowtie R_2$ without generating all the join tuples and without accessing all tuples of R_1 and R_2. Our solution enables the progressive computation of the skyline join on large data sets or data derived from complex queries, and hence yields a very powerful tool for applications such as decision-making and complex data analysis (the typical use-cases for the skyline operator).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SIGMOD’11, June 12–16, 2011, Athens, Greece.

Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

Figure 1: Example of skyline join.

Figure 1 illustrates an example of computing the skyline over the result of a join. Suppose that the database contains relations Hotels and Restaurants that store information about a specific city. A tourist may be interested in discovering the best combinations of hotels and restaurants in the same “Location”, by minimizing the hotel’s “Price”, maximizing the hotel’s “Rating”, maximizing the restaurant’s “Quality” and minimizing its “Distance” from a subway station. A sample SQL query that retrieves this information is the following:

```
SELECT H.HID, R.RID, H.Hname, R.Rname, H.Location, H.Price, H.Rating, R.Distance, R.Quality
FROM Hotels H, Restaurants R
WHERE H.Location = R.Location
SKYLINE OF H.Price MIN, H.Rating MAX, R.Distance MIN, R.Quality MAX
```

The result of the query is depicted in Figure 1. As shown, the use of the skyline operator allows the retrieval of the most “important” join tuples according to the specified attributes.

The naive method of computing all join tuples first and then computing the skyline set leads to redundant processing, since the join is computed in its entirety (typically, an expensive operation) whereas the skyline set contains potentially only few tuples. Ideally, we would like to process and join only a subset of the input tuples in order to compute the skyline set of the join. This approach improves dramatically the performance of the naive method and makes the computation feasible in the context of large data sets. Unfortunately, it is non-trivial to decide which input tuples can be omitted without compromising the correctness of the computed skyline set. The reason is that the skyline set of the join depends both on the domination relationships in each input relation

1We assume that SQL is extended with a SKYLINE OF operator.
(e.g., which hotels have the best trade-off in rating and price, and which restaurants have the best trade-off in distance and quality), and on the join correlations across the two input relations (e.g., the existence of “good” hotels and restaurants in the same location). In general, the skyline set of the join is not necessarily identical to the join of the skyline sets of the input relations.

The majority of previous studies on skyline computation have focused on the case of a single relation [2, 4, 13]. The proposed techniques require the entire join result to be computed, and thus are prohibitively expensive as we explained earlier. Two recent studies have examined specifically the problem of computing the skyline over a join [7, 10]. However, we argue (and verify our claim experimentally) that these approaches are not effective. More specifically, the technique in [7] does not support early termination and hence it will always access all input tuples. The second technique, termed ProgXe [10], may terminate early under certain conditions, but it requires a specialized multi-dimensional access method whose parameters need to be tuned carefully. This requirement increases the overhead of integrating ProgXe in an existing system, and also precludes its usage in pipelined query plans where the inputs are generated by other physical operators. Moreover, ProgXe does not carry any theoretical guarantees on how early it can terminate, which may lead to unpredictable performance on certain inputs. This lack of robustness is particularly problematic in the context of ad-hoc data analysis, where good performance is critical.

Our Contributions. Motivated by the shortcomings of existing methods, we develop a novel algorithm, termed SFSJ, for computing the skyline set of a join \(R_1 \bowtie R_2 \). *SFSJ* is the first skyline join algorithm that combines several salient properties: (a) it accesses only a subset of each input relation and computes the skyline set without generating all the join results, (b) it can be readily implemented in existing database systems, as it relies on common infrastructure and does not require any complicated data structures, (c) it generates the skyline progressively, which facilitates its incorporation in pipelined query execution plans, and (d) it carries optimality and instance-optimality guarantees for its performance, thus ensuring that it works robustly across a variety of inputs. More concretely, the technical contributions of our work can be summarized as follows:

- **We develop a novel early-termination condition (Section 4) that allows an algorithm to compute the correct skyline join set after reading only a subset of the input tuples.** The condition is applied on a simple model of sorted input access, which is readily supported in existing systems using either B-trees over base tables or a sort operator over complex expressions.
- **We introduce the SFSJ algorithm (Section 5) for computing the skyline over a join.** SFSJ alternates between its inputs and generates the skyline tuples progressively as it computes the join results. It relies on the early-termination condition in order to determine when it has accessed enough tuples to generate the complete skyline set.
- **We formally analyze the performance of SFSJ (Section 6) under different strategies that define the order in which the input relations are accessed.** We introduce a new adaptive strategy that prioritizes access to the input relations and prove that it is optimal for SFSJ, i.e., it minimizes the total number of accessed tuples. Moreover, we provide a theoretical analysis that relies on techniques previously applied on the rank join problem [5, 11]. Specifically, we show that SFSJ is instance-optimal with a ratio of two within all deterministic algorithms and the class of inputs with bounded repetitions. To the best of our knowledge, ours is the first work to provide strong optimality results for the specific problem.

- We conduct a detailed experimental study to evaluate the performance of SFSJ (Section 7). Our results with synthetic and real-life data sets demonstrate that SFSJ computes the skyline join result efficiently after accessing only a subset of the input tuples. SFSJ outperforms two competitor techniques by a significant margin, thus validating its theoretical advantages over existing approaches.

2. RELATED WORK

Single-Relation Skyline

Previous studies have introduced a host of different techniques for computing the skyline of a single relation [1–4, 13]. Even though it is conceptually possible to apply these techniques on the results of a join operator, this solution is not likely to perform well in practice. Techniques that require an index over the input relation (e.g., [13]) will need the join results to be computed in full and indexed before computing the skyline. Techniques that do not require an index (e.g., [1, 2]) can be pipelined with the join operator, but they are decoupled from the semantics of the join and essentially examine the complete join stream before terminating. (We show this behavior analytically in Section 4.) In contrast, SFSJ fuses the computation of the join and the skyline in order to terminate early, i.e., SFSJ outputs the correct skyline without computing the full join or reading all the input tuples. Providing a condition for early termination in this setting is a key technical contribution of our work.

Join Skyline

Jin et al. [6] propose a multi-relational skyline operator that combines a sort-merge join algorithm with skyline processing. The operator involves a non-trivial processing cost, as it computes the skyline and group skyline tuples for all join values for each relation, then eliminates dominated tuples for each join value, and finally sorts the relations such that skyline tuples precede group skyline tuples. Clearly, the operator needs to access both relations multiple times to produce the correct result. Sun et al. [12] propose a distributed adaptation of SaLSa [1, 2] to compute the join skyline in a distributed setting. However, as will be shown in Section 4, this approach cannot lead to early termination. Moreover, the algorithms in [12] share the same restrictions with the approach proposed in [6]. In a follow-up study of [6], two non-blocking algorithms for skyline join are proposed [7]. The main idea is to interleave the join with the skyline computation, employing the nested-loop and sort-merge join algorithms. However, support for early termination is not provided. In contrast, our algorithm returns the correct result without accessing all input tuples.

In [10], the ProgXe framework is introduced for skyline join computation that supports progressive result generation. ProgXe partitions the input relations by using a multidimensional grid access method. This limits the framework to joins over base tables, whereas in practice the join may be also computed over complex relational expressions. Even in the case of base tables, the use of a multidimensional structure makes the performance of ProgXe sensitive to the number of dimensions, but most importantly to the resolution of the grid. ProgXe does not provide any method for optimizing its performance for two given relations (by setting the number of grid partitions to the most appropriate values), thus exhaustive testing is required. Further, as demonstrated in our experimental study, ProgXe does not terminate before exhausting both input relations in all common data distributions tested. Finally, the particular access method is not part of conventional database systems and hence requires an additional implementation effort. The techniques that we develop rely simply on sorted access, which is implementable with existing relational operators, and do not require tuning. Moreover, we are able to prove strong optimality properties about the early termination of our algorithms.
Contributions from a single common attribute make two simplifying assumptions that are not crucial for our techniques or simply be base tables. To facilitate exposition, we respectively. Accordingly, we define the instance SKY of the skyline join problem, the group skyline of R, with respect to value x of the joining attribute is defined as SKY (Ri, x) = SKY (αi=Ri (Ri)).

A consequence of this definition is that if a tuple τi ∈ Ri appears in SKY (Ri) then it also appears in SKY (Ri, x) for x = τi, α. For example, Figure 2(a) depicts the tuples of relation Hotels (see Figure 1) with respect to the set B = {Price, Rating}. Each tuple is mapped to a point in the 2-dimensional space defined by the value of the price and the rating of the hotel. The point is annotated with the tuple id and the corresponding value of the join attribute. Skyline tuples are depicted with squares. We also use a dashed line to connect the group skyline tuples for join value B. Notice that the skyline tuple h3 is also a group skyline tuple for B. Figure 2(b) shows a similar visualization for relation Restaurants. Group skylines enable the formulation of a very useful property.

Property 1. Let τ = τ1 ∨ τ2 be a tuple in R1 ⊗ R2. It holds that τ ∈ SKY (R1, τ, α) if and only if ∃i : τi ∈ SKY (Ri, τ, α)

Essentially, tuples τi ∈ Ri that are not group skyline tuples cannot contribute to the join skyline. The reason is that the produced join tuples are guaranteed to be dominated. Returning to the example of Figure 2(a), h3 cannot produce a skyline join result, since h3 ∨ h4 and h3 ∈ SKY (Hotels, A), and hence any join result h4 ∨ τ (e.g., for τ = τ6) will be dominated by the result h3 ∨ τ. Furthermore, the joined tuple that consists of a skyline tuple (e.g., τ1) joined with a group skyline tuple (e.g., h3) is always a skyline join result. Notice that we cannot ascertain whether the combination of group skyline tuples produces skyline join results beforehand.

3. PRELIMINARIES

Let R denote a relation and B denote a set of numerical attributes in the schema of R. Let τ and τ′ represent tuples in R. We say that tuple τ′ is dominated by τ with respect to B, denoted as τ ¬B τ′, if and only if πR(τ′) ⊈ πR(τ) and πR(τ′) ≥ πR(τ) for all β ∈ B. Accordingly, we define the skyline set of R with respect to B, denoted SKYg(R), as the minimal subset of R that dominates every other tuple in R, that is, ∀τ′ ∈ (R – SKYg(R)) ∃τ ∈ SKYg(R) such that (τ ¬B τ′). We can extend our definitions based on maximizing values or a hybrid of the two models. We now introduce the skyline join problem that we address in this paper.

Definition 1. (Skyline Join Problem) An instance I of the skyline join problem is a tuple (R1 ⊗eq R2, B1, B2), where R1 ⊗eq R2 is an equi-join expression and B1 is a set of numerical attributes from Ri, i = 1, 2. The solution to an instance I is the set SKY B1∪B2 (R1 ⊗eq R2).

As an example, the SQL query in Section 1 specifies an instance of the skyline join problem over relations Hotels and Restaurants and attribute-sets B1 = {Price, Rating} and B2 = {Distance, Quality} respectively.

The problem definition does not place any constraints on relations R1 and R2. Indeed, they may result from complex relational expressions or simply be base tables. To facilitate exposition, we make two simplifying assumptions that are not crucial for our techniques. First, we assume that the join expression is a natural join on a single common attribute α, and henceforth write R1 ⊗ R2. We use τ, α to denote the value of the join attribute for a tuple τi ∈ Ri, i = 1, 2. Second, we assume that the domain of any attribute in B1 ∪ B2 is the interval [0, 1], and use the term skyline or scoring attribute to refer to any β ∈ B. We also simplify our notation by omitting the attribute-set from the skyline notation. Hence, for an instance I = (R1, R2, B1, B2), the skyline set SKY (R1 ⊗ R2) is taken with respect to B1 ∪ B2. Similarly, the skyline set SKY (Ri) is taken with respect to Bi. We extend this simplification to the notation for tuple dominance.

On a final note, we introduce the auxiliary concept of group skyline which is used in the development of our techniques.

Definition 2. (Group Skyline) Given an instance I of the skyline join problem, the group skyline of Ri with respect to value x of the joining attribute is defined as SKY (αi=Ri (Ri)).
such as secondary B-tree indexes. We discuss the details at the end of the section, but for the time being we note that the overhead is much smaller compared to the specialized access methods required by other techniques [10].

In this section, we formalize a condition that allows an algorithm to check whether $SKY(R_1 \Join R_2) = SKY(S_1 \Join S_2)$, where S_i denotes a prefix of R_i according to the sorted order. Clearly, this is the crucial prerequisite in order to support early termination. The condition that we introduce is novel in that it takes into account the semantics of both the join and the skyline operator, and thus differs from previous works that consider solely the skyline operator.

4.1 Inadequacy of Existing Techniques

Before presenting the details of the new early-termination condition, we examine if the algorithms that employ sorted access to solve the single-relation skyline problem [1, 2, 13] can be adapted to the skyline join problem. Our analysis yields a negative answer: existing algorithms employ a stopping condition that is oblivious to the semantics of the join operator, and hence fails to effectively support early termination.

The analysis that we present is based on the state-of-the-art SaLSa algorithm of Bartolini et al. [1, 2]. SaLSa receives as input a single stream of tuples that are sorted based on f_{min}, and outputs the skyline set of the input tuples. The algorithm accesses its input one-tuple-at-a-time, and maintains the current skyline set and an associated threshold x. The current skyline set is returned as the output once the next input tuple has an f_{min} value that is not smaller than x.

In the context of the skyline join problem, we must couple SaLSa with a join algorithm, say A, that reads R_1 and R_2 in sorted order of f_{min} and progressively computes $R_1 \Join R_2$ also in sorted order of f_{min}. For instance, A can be a rank join algorithm that employs f_{min} as the scoring function. Algorithm A returns the next join tuple as requested by SaLSa, and terminates when SaLSa satisfies the aforementioned termination condition.

Unfortunately, the previous scheme is not effective. We prove that any correct algorithm A will have to exhaust at least R_1 or R_2 if $SKY(R_1 \Join R_2)$ is a non-trivial skyline set. Formally speaking, a trivial skyline set satisfies the following property: $\tau.\beta = \beta.\rho$ for all $\beta \in B_1 \cup B_2$ and for all τ and ρ in $SKY(R_1 \Join R_2)$. Essentially, all the skyline join tuples are identical and correspond to a single point that dominates every other join tuple. In practice we expect to see non-trivial skylines, in which case A will have to exhaust at least one input.

Theorem 1. Let A be a correct deterministic algorithm that computes $R_1 \Join R_2$ in ascending order of f_{min} (using some arbitrary tie breaking rule), assuming that R_1 and R_2 are also accessed in sorted order of f_{min}. Suppose that SaLSa reads the output of A and let τ^{last} be the last tuple that SaLSa reads before it returns the skyline $SKY(R_1 \Join R_2)$. If $SKY(R_1 \Join R_2)$ is non-trivial, then A has to exhaust at least one of its inputs in order to generate the results up to τ^{last}.

Proof. Let $\tau^{first} \equiv \tau_1 \Join \tau_2$ be the first tuple accessed by SaLSa. Clearly, $f_{min}(\tau^{first}) \leq f_{min}(\tau^{last})$. Without loss of generality, assume that $f_{min}(\tau) = f_{min}(\tau_1)$. The proof is symmetric if $f_{min}(\tau) = f_{min}(\tau_2)$.

We prove first an auxiliary result, namely that $f_{min}(\tau^{first}) < f_{min}(\tau^{last})$. Suppose that this is false, i.e., $f_{min}(\tau^{first}) = f_{min}(\tau^{last})$. Since SaLSa terminates after reading τ^{last}, it holds that $f_{min}(\tau^{last}) \geq x$, where x is the threshold maintained by SaLSa. By definition, $x = \max\{\rho.\beta | \beta \in B_1 \cup B_2\}$, where ρ is the tuple in the current skyline set that has the minimum maximum coordinate, i.e., $\rho = \arg\min\{\max\{\tau.\beta | \beta \in B_1 \cup B_2\} | \tau$ is a skyline tuple). From our hypothesis, it holds that $x = \max\{\rho.\beta | \beta \in B_1 \cup B_2\} \leq f_{min}(\tau^{first})$, and since $x \geq f_{min}(\rho) \geq f_{min}(\tau^{first})$, it follows that $x = \max\{\rho.\beta | \beta \in B_1 \cup B_2\} = f_{min}(\tau^{last}) = f_{min}(\rho)$. This means that ρ corresponds to the corner-point $(f_{min}(\tau^{first}), \ldots, f_{min}(\tau^{last}))$ and hence it dominates every other tuple in $R_1 \Join R_2$. This is a contradiction, as we assumed that $SKY(R_1 \Join R_2)$ is non-trivial. Hence, it must be that $f_{min}(\tau^{first}) < f_{min}(\tau^{last})$.

We proceed to show that A will exhaust R_2. Suppose otherwise. Since $f_{min}(\tau^{last}) < f_{min}(\tau^{first})$, this means that A has generated all the join results whose f_{min} value is equal to $f_{min}(\tau^{first})$ without having accessed the last tuple of R_2. It is straightforward to show that A commits a mistake if that last tuple joins with τ_1, which contradicts our assumption that A is a correct algorithm.

Figure 3 shows an example of applying SaLSa for computing the skyline join set\(^3\). The x-axis and y-axis represent the $f_{min}(\tau_i)$ values with respect to R_1 and R_2 respectively. R_i is sorted based on $f_{min}(\tau_i)$, $i = 1, 2$, but the join tuples are accessed by SaLSa with respect to $f_{min}(\tau_i)$. Henceforth, we use the superscript of a tuple to denote its rank in the corresponding sorted relation. SaLSa would first process tuple τ^1 with $f_{min}(\tau^1) = 0.1$ and set a threshold $x = \max\{\rho.\beta | \beta \in B_1 \cup B_2\} = 0.3$. Based on the termination condition of SaLSa, tuples τ^i are accessed until $f_{min}(\tau^i) \geq x$. Thus, in Figure 3, all tuples enclosed in the shaded rectangle are pruned. On the other hand, all join tuples that fall on a dashed line have the same f_{min} value. For example, tuples τ^2 and τ^3 have the same f_{min} value, and they are produced by the first tuple τ^1 of R_1 and tuples τ_2^2 and τ_2^3 of R_2. In general, the first tuple of R_1 can be combined with the last tuple of R_2, as long as they have the same join value and the generated join tuple will have the minimum f_{min} score. Thus, SaLSa needs to access all tuples of R_2 in order to ensure that no other tuple τ_2^i can be joined with τ_1.

The behavior of SaLSa is clearly problematic. Performance is impacted negatively, particularly if the exhaustd input corresponds to a large relation. Moreover, the trigger for this bad performance is a high-level property (non-trivial skyline sets) that is quite likely to appear in practice. The proof reveals that the problem lies with the design of SaLSa’s termination condition, which is tailored to the single-relation problem and is thus oblivious of the underlying join operation. In contrast, we develop an early termination condition that directly takes into account the semantics of the join operation, and hence avoids the pitfalls of SaLSa’s termination condition.

4.2 Condition for Early Termination

We develop a condition that asserts the following: $SKY(R_1 \Join R_2)$ is equal to $SKY(S_1 \Join S_2)$, where each S_i denotes a prefix of R_i according to the sorted access model. We first provide a
assume that each relation has two skyline attributes. We can assert
empty prefix of relation
condition.

precise definition of the prefix that is considered in the termination condition.

DEFINITION 3. (Closed Prefix of Relation \(R_i \)) Let \(S_i \), be a non-empty prefix of relation \(R_i \), and define \(t(S_i) = \max \{ \min(\rho_i) \mid \rho_i \in S_i \} \). \(S_i \) is called a closed prefix of \(R_i \) iff \(\min(\tau_i) > t(S_i) \) for all \(\tau_i \in R_i - S_i \).

Essentially, the tuples in \(R_i - S_i \) correspond to bands with strictly higher \(\min \) values than all tuples in the closed prefix \(S_i \). An example is shown in Figure 4 for two sample relations \(R_1 \) and \(R_2 \). We assume that each relation has two skyline attributes. We can assert that \(S_i = \{ \tau_1^i, \tau_2^i, \tau_3^i \} \) forms a closed prefix for \(R_i \) according to the previous definition, since every other tuple in \(R_i \) has a \(\min \) value that is higher than \(t(S_i) = \max \{ \min(\tau_1^i), \min(\tau_2^i), \min(\tau_3^i) \} \). A similar observation can be made for \(S_2 = \{ \tau_2^1, \tau_3^1, \tau_3^2 \} \).

The significance of the closed prefix \(S_i \) is that it defines a point, namely the corner of the last accessed band, that dominates all tuples in \(R_i - S_i \). Indeed, the point \((t(S_i), t(S_i), \ldots, t(S_i))\) dominates all tuples in \(R_i - S_i \). In turn, any tuple that dominates this corner also dominates \(R_i - S_i \). We capture this property through the minimum anti-dominance region \(MAD(S_i) \).

DEFINITION 4. (Minimum Anti-Dominance Region) The minimum anti-dominance region of a closed prefix \(S_i \) is defined as \(MAD(S_i) = \{ \rho_i \mid \rho_i \in S_i \land \rho_i, \beta \leq t(S_i) \forall \beta \in B_i \} \).

The dashed rectangles in Figure 4 depict \(MAD(S_i) \), assuming that \(S_i \) contains the tuples in the corresponding shaded region.

Assuming that \(MAD(S_i) \neq \emptyset \), none of the tuples in \(R_i - S_i \) can appear in \(SKY(R_i) \), and hence we can assert that \(SKY(R_i) = SKY(S_i) \). This can be verified on the example of Figure 4. Nevertheless, this condition is not sufficient for stopping accessing tuples of \(R_i \), because group skyline tuples (which may not appear in \(SKY(R_i) \)) may also contribute to \(SKY(R_1 \bowtie R_2) \) (see the properties of the skyline join discussed in Section 3). A correct alternative would be to stop accessing \(R_i \) only if \(S_i \) contains all the group skyline tuples. However, this approach is not viable in practice, because the number of distinct join values may not be known. In this case, all the tuples in \(R_i \) have to be accessed in order to ensure that no other group skyline tuple exists. Moreover, the cost of computing all group skyline tuples can be prohibitively high (if the domain of join values is of high cardinality), while some group skyline tuples may not contribute to the skyline join result at all (for example, this is case for join value \(C \) in Figure 4). Therefore, the main challenge is to find an early-termination condition that does not require computing the group skyline sets for all join values. We achieve this goal by taking advantage of the properties of \(MAD(S_i) \), that lead to the formulation of a sufficient condition for when a tuple in \(R_i - S_i \) can generate a skyline join result.

Lemma 1. If \(MAD(S_i) \neq \emptyset \) and \(\pi_i(SKY(S_j)) - \pi_i(MAD(S_i)) = \emptyset \) for \(i \neq j \) then there exists no tuple in \(R_i - S_i \) that can generate a skyline join result, i.e., \(SKY(R_i \bowtie R_j) \cap ((R_i - S_i) \bowtie R_j) = \emptyset \).

Proof. By contradiction. Suppose that there exists a \(\tau_i \in R_i - S_i \) that belongs to \(SKY(R_i \bowtie R_j) \cap ((R_i - S_i) \bowtie R_j) \).

The fact that \(MAD(S_i) \neq \emptyset \) implies that \(SKY(S_i) = SKY(R_i) \).

It follows that \(MAD(S_i) \neq \emptyset \) because \(SKY(S_i) \neq \emptyset \) and otherwise the condition would not be true. We consider two cases for \(\tau_i \).

Case 1: \(\tau_i, \alpha \in \pi_i(MAD(S_i)) \). It follows that there exists \(\rho_i \in MAD(S_i) \) such that \(\tau_i, \alpha = \rho_i, \alpha \). Clearly, \(\rho_i \bowtie \tau_i \) is a valid join result, and it also holds that that \(\rho_i \not\prec \tau_i \) due to the dominance property of \(MAD(S_i) \). Hence, \(\rho_i \bowtie \tau_i \prec \tau_i \bowtie \tau_j \).

Case 2: \(\tau_i, \alpha \notin \pi_i(MAD(S_i)) \). Since \(\tau_i, \alpha = \tau_i, \alpha \in \pi_i(MAD(S_i)) \), it follows that \(\tau_j, \alpha \notin \pi_i(SKY(S_j)) \) and hence \(\tau_j \notin SKY(S_j) \).

Given that \(SKY(S_j) = SKY(R_j) \), there exists \(\tau_j' \in SKY(S_j) \) such that \(\tau_j' \prec \tau_j \). The condition ensures that \(MAD(S_j) \) contains a tuple \(\tau_j' \) such that \(\tau_j', \alpha = \tau_j, \alpha \). Since \(\tau_j' \prec \tau_j \) (by the dominance property of \(MAD(S_j) \)), it holds that \(\tau_j', \alpha \bowtie \tau_j' \not\bowtie \tau_j \).

In both cases, we identify a join tuple that dominates \(\tau_i \bowtie \tau_j \), which contradicts our assumption that \(\tau_i \bowtie \tau_j \in SKY(R_i \bowtie R_j) \).

Lemma 1 states that if for every skyline tuple in \(SKY(S_j) \) \((j = 1) \) there exists a tuple in \(MAD(S_j) \) \((i = 2) \) with same join value, then the tuples in \(R_2 - S_2 \) do not contribute to the skyline join result. We illustrate the basic intuition with a simple example.

Assume two group skyline tuples \(\rho_1 \in SKY(R_1, \beta) \), \(\rho_2 \in SKY(R_2, \beta) \) of \(R_1 \) and \(R_2 \) respectively, such that \(\rho_2 \in R_2 - S_2 \). Let us first assume that \(\rho_1 \) is also a skyline tuple \(\rho_1 \in SKY(R_1) \).

Since \(MAD(S_1) \neq \emptyset \), it holds that \(\rho_1 \in SKY(S_1) \) and that there exists a tuple \(\tau_1 \in MAD(S_2) \) such that \(\tau_1, \alpha = \tau_2, \alpha = \beta \). This leads to a contradiction, since \(\tau_2 \) dominates \(\rho_2 \) and therefore \(\rho_2 \) is not a group skyline tuple and does not contribute to the skyline join result. On the other hand, if \(\rho_1 \notin SKY(R_1) \), then there exists a tuple \(\tau_1 \in SKY(S_1) = SKY(R_1) \) such that \(\tau_1 \bowtie \tau_2 \) dominates \(\rho_2 \), since it dominates all tuples in \(R_2 - S_2 \). We can thus verify that \(\tau_1 \bowtie \tau_2 \prec \rho_1 \bowtie \rho_2 \), since \(\tau_1 \bowtie \rho_2 \) and \(\tau_2 \bowtie \rho_2 \). Hence, any tuple in \(R_2 - S_2 \) is not relevant for the computation of \(SKY(R_1 \bowtie R_2) \), and this is independent of whether \(R_2 - S_2 \) contains additional group skyline tuples \(SKY(R_2, \beta) \).

Overall, the join values that appear in \(MAD(S_i) \) and \(SKY(S_i) \) \((i = 1, 2) \) are sufficient for deciding whether it holds that \(SKY(S_i \bowtie S_2) = SKY(R_1 \bowtie R_2) \). Building on Lemma 1, it is straightforward to define our early-termination condition.

Theorem 2. (Early Termination Condition) It holds that \(SKY(R_1 \bowtie R_2) = SKY(S_1 \bowtie S_2) \) if the following holds:

\[
\pi_i(SKY(S_1)) - \pi_i(MAD(S_1)) = \emptyset \land \\
\pi_i(SKY(S_2)) - \pi_i(MAD(S_2)) = \emptyset
\]

Proof. Follows directly by applying Lemma 1 for each conjunction.

We further illustrate Theorem 2 using the example of Figure 4. We first verify that the condition for early termination holds in this example, and then we explain why no combination of any group skyline tuple can produce additional skyline join results. The early termination condition demands that for every join value of any tuple

Figure 4: Example relations \(R_1 \) and \(R_2 \).
in \(\text{SKY}(S_i) \), there exists a tuple in \(\text{MAD}(S_i) \) with the same join value. Indeed, looking at Figure 4, for \(\tau_1^i \in \text{SKY}(R_1) \) there exists the tuple \(\tau_2^i \in \text{MAD}(S_i) \), and for \(\tau_1^i, \tau_2^i \in \text{SKY}(R_2) \) the tuples \(\tau_1^i, \tau_1^i \in \text{MAD}(S_i) \) respectively. Based on the early termination condition, no skyline results can be generated by tuples in \(R_1 - S_1 \) and \(R_2 - S_2 \).

Now, let us consider group skyline tuples. Since \(\text{MAD}(S_i) \neq \emptyset \) (for \(i = 1, 2 \)), all join results produced by the skyline tuples of \(R_1 \) and \(R_2 \) have been generated. Skyline tuples of \(R_i \) can be also combined with group skyline tuples of \(R_j \) to produce skyline join results. Given a tuple \(\tau_i \in \text{SKY}(R_i) \) with join value \(\beta \), there exists a tuple in \(\text{MAD}(S_j) \) with the same join value. Therefore, no group skyline tuple \(\text{SKY}(R_j, \beta) \) can be found in \(R_j - S_j \), if there exists a tuple \(\tau_j \in \text{SKY}(R_j) \) with join value \(\beta \). For example, in Figure 4, the tuple \(\tau_1^1 \in \text{SKY}(R_1) \) has the join value \(B \), which is the join value of tuple \(\tau_1^2 \in \text{MAD}(S_1) \). Then, no group skyline tuple for \(B \) can be found in \(R_2 - S_2 \), since any such tuple is dominated by \(\tau_2^2 \). Finally, group skyline tuples of \(R_1, R_2 \) that have a join value different than those that appear in the tuples of \(\text{SKY}(R_1) \) and \(\text{SKY}(R_2) \) may produce skyline join results. A group skyline tuple of \(R_1 \), in our example \(\tau_2^1 \), has a dominating tuple \(\tau_1^1 \in \text{SKY}(R_1) \). Clearly, the join result \(\tau_1^1 \Join \tau_2^1 \) is dominated by \(\tau_1^1 \Join \tau_2^2 \) and hence cannot appear in \(\text{SKY}(R_1 \Join R_2) \). Thus, our early termination condition does not require to retrieve all group skyline tuples for all join values.

4.3 Implementing Sorted Access

This subsection examines the implementation of the sorted access model. First, we consider the case where \(R_i \) is a base table. One obvious solution is to maintain a B-tree index on \(R_i \) for each possible choice of \(B_j \), using the result of \(\text{fmin} \) as the key of the index. This approach is feasible if there are relatively few choices for \(B_i \) and the relation is not updated frequently.

An alternative approach is to realize the sorted access through several B-tree indices. More specifically, let \(B \) be the set of attributes of \(R \), that can be potentially used as scoring attributes. For each \(\beta \in B \), we maintain a separate index that uses \(\beta \) as its key and the remaining attributes in \(B \) as “follow” attributes. Hence, a tuple \(\tau_i \) is mapped to an index entry that records all the attributes of \(B \) and the corresponding record identifier (RID), and the index entries are sorted based on \(\beta \). This means that the index can provide a stream of RIDs sorted on \(\beta \). Given a specific choice for \(B_i \subseteq B \), we open cursors to the corresponding indices and essentially perform a merge of the RID streams in a single RID stream, which can then be transformed to a sorted tuple stream. To avoid the generation of duplicates, an RID is returned from an index scan only if the key value is the minimum of all attributes in \(B_i \) for the corresponding tuple. This check can be performed efficiently, since all attributes in \(B_i \) can be found in the follow attributes of the index entry. Even though this scheme is not as efficient as accessing \(R_i \) through a single index, the advantage is that the number of indices is small, equal to the number of attributes in \(B \).

Next, let us examine the case where \(R_i \) is generated by a relational expression. One obvious solution is to sort \(R_i \) based on \(B_i \), but this would require scanning all of \(R_i \). Another choice is to evaluate the expression using a physical plan that generates \(R_i \) in the correct order. For instance, assume that \(R_i \) is the result of applying a selection predicate on a base table \(T \). If \(T \) is accessed based on one of the previous schemes, then \(R_i \) can be generated by applying the predicate on-the-fly on the tuples accessed from \(T \).

5. The SFSJ Algorithm

In this section, we introduce a novel skyline join algorithm termed

\[
\text{SFSJ (short for Sort-First-Skyline-Join).} \text{ At a high-level, SFSJ alternates between relations } R_1 \text{ and } R_2 \text{ and employs Theorem 2 to check whether the accessed tuples are sufficient to compute the correct skyline join result. An important feature is that it generates skyline tuples as soon as possible, even before the early termination condition is satisfied. Moreover, it prunes input tuples if they cannot contribute to the join skyline, thus reducing the number of generated join results and dominance tests.}
\]

Algorithm Descrioption. Figure 5 presents the pseudocode for SFSJ. We first describe the data structures used by the algorithm. For each input \(R_i \), SFSJ maintains a tuple-set \(S_i \) that is conceptually equivalent to a closed prefix of the input. Accordingly, a tuple-set \(M_i \) is used to record the current anti-domination region based on \(S_i \). Finally, the algorithm maintains a tuple-set \(B_i \) that maintains all the recently accessed tuples with the same \(\text{fmin} \) value, which is recorded in variable \(t_i \). This tuple-set enables SFSJ to process for each relation \(R_i \) groups of tuples with the same \(\text{fmin} \) value.

Moreover, the algorithm is parameterized by a deterministic pulling strategy \(P \) that determines the order in which SFSJ accesses its inputs. One obvious choice is to employ simple round-robin access, but it is also possible to favor one input over the other (e.g., pull from \(R_1 \) twice as much as from \(R_2 \)), or determine the next input to pull adaptively based on the observed data values. We analyze possible pulling strategies in the next section. We do not make any further assumptions about \(P \), except that it always returns an index \(i \) such that \(R_i \) is not yet exhausted.

SFSJ works in iterations, where in each iteration it accesses a new tuple from a relation \(R_i \) that is determined by the strategy \(P \) (line 3). If the newly accessed tuple \(\tau_i \) satisfies \(\text{fmin}(\tau_i) = t_i \) (line 6), then \(\tau_i \) is added to the current batch \(B_i \) and the algorithm continues with the next iteration. Otherwise, \(\tau_i \) signals the start of a new group, and the tuples in \(B_i \) are integrated in \(S_i \) and new join tuples are produced (lines 9–12). The batch-update of \(S_i \) ensures that \(S_i \) is always a valid closed prefix of \(R_i \), as defined by Definition 3. Furthermore, as an optimization, SFSJ adds to \(S_i \) only group sky-
Correctness. As already mentioned, SFSJ relies on the condition of Theorem 2 in order to terminate early with a correct solution. However, it deviates from a naive application of the condition in two important ways: it reports skyline join results progressively, and it prunes tuples that are not group skyline tuples. We show that these features do not affect correctness.

First, we prove a key lemma for progressive result generation.

Lemma 2. Let \(\tau = \tau_1 \Join \tau_2 \) and \(\tau' = \tau_1' \Join \tau_2' \) that appear in \(R_1 \Join R_2 \). It holds that \(\tau_1' \neq \tau_1 \) if \(\exists \alpha \) such that \(f_{\min}(\tau_1) < f_{\min}(\tau_1') \).

Proof. It holds that \(f_{\min}(\tau_1) < f_{\min}(\tau_1') \) and therefore there exists at least one skyline attribute \(\beta \) for which \(\tau_1, \beta < \tau_1', \beta \). It follows that \(\tau_1' \) cannot dominate \(\tau \).

The above lemma guarantees that if every relation \(R_i \) is accessed in ascending order of the \(f_{\min} \) values and all tuples with the same \(f_{\min} \) value are processed in a batch, then the join results of a tuple \(\tau_1' \) cannot dominate those of tuple \(\tau_1 \), if \(\tau_1 \) is in a batch that precedes the batch of \(\tau_1' \). This enables the progressiveness of our algorithm.

Our second result states the overall correctness of SFSJ.

Theorem 3. When the stopping condition holds, SFSJ has obtained the correct skyline join result.

Proof. Theorem 2 proves that the stopping condition always guarantees that the complete and correct skyline join result set is computed, if \(S_1 \) and \(S_2 \) are closed prefixes of \(R_1 \) and \(R_2 \) respectively. Lemma 2 proves that only skyline join tuples are added to the result set (lines 13–14). Finally, the correctness of SFSJ is not violated by discarding tuples that are not group skyline tuples (line 10). Property 1 guarantees that all tuples of \(S_1 \) and \(S_2 \) that may produce skyline join tuples have been processed, since only tuples that do not belong to any group skyline set are discarded. Furthermore, the stopping condition cannot be satisfied earlier due to discarding of tuples of \(S_1 \), since (a) the skyline set \(SKY(S_1) \) does not change by discarding dominated tuples, and (b) the distinct values of the joining attribute in \(M \) are not influenced by discarding tuples that are not group skyline tuples (a tuple \(\tau_1' \) is added to \(M \), unless there exists a tuple \(\tau_1'' \in M \) such that \(\tau_1', \alpha < \tau_1'' \)). Therefore, we conclude that SFSJ can safely stop processing tuples when the stopping condition holds, even though only group skyline tuples are maintained in the sets \(S_i \).

Implementation Details. We discuss next some important details about the efficient maintenance of the tuple-sets used by SFSJ, namely \(S_i \), \(M_i \), and \(SKY(S_i) \). The key observation is that we can efficiently maintain these tuple-sets by taking advantage of the

property that they are append-only. This property stems from the fact that each relation \(R_i \) is accessed in ascending order of \(f_{\min} \).

In more detail, the set of tuples \(S_i \) of relation \(R_i \) is implemented as a sorted list of tuples sorted by \(f_{\max}(\tau_1) = \max_{\beta \in R_i} \{ \pi_{\beta}(\tau_1) \} \). For any two tuples \(\tau_1, \tau_1' \in S_i \), if \(f_{\max}(\tau_1) < f_{\max}(\tau_1') \), then \(\tau_1 \) precedes \(\tau_1' \) in the list \(S_i \). This technique allows efficient implementation of \(M_i \), namely as a pointer to a tuple \(\tau_1 \in S_i \). Given the last processed tuple \(\tau_1 \), \(M_i \) is updated by examining the tuples starting from \(\tau_1 \) and stopping at the first tuple \(\tau_1' \) for which \(f_{\max}(\tau_1') < f_{\min}(\tau_1) \). The tuple \(\tau_1 \) preceding \(\tau_1' \) is the new position for the pointer that delineates \(M_i \). Then, \(M_i \) is a subset of the tuple-set \(S_i \) containing all tuples starting from the first tuple \(S_i \) up to the tuple \(\tau_1 \). For example, consider the relation \(R_3 \) depicted in Figure 4(b), where \(\tau_3 \) is the last processed tuple and \(S_2 = \{ \tau_2, \tau_2', \tau_2'' \} \). Only the value of \(f_{\max}(\tau_2') = 0.2 \) is smaller than \(f_{\min}(\tau_2') = 0.3 \). Therefore, \(M_2 \) is defined by a pointer to \(\tau_2' \) indicating that only \(\tau_2' \) belongs to \(M_2 \).

The set of skyline tuples \(SKY(S_i) \) can also be maintained efficiently in order to speed-up the evaluation of the stopping condition. Again, due to the sorted access model, SFSJ will always append tuples in \(SKY(S_i) \). Therefore, we only need to check whether a newly processed tuple \(\tau_1 \) is dominated by a tuple \(\tau_1' \in SKY(S_i) \). If this is not the case, \(\tau_1 \) is inserted in \(SKY(S_i) \).

Finally, to improve even further the performance of SFSJ, the tuple-set \(S_i \) can be maintained as the union of two sets of tuples namely \(SKY(S_i) \) and \(X_i = S_i - SKY(S_i) \). A tuple \(\tau_1 \) of \(S_i \) is only inserted in the set \(X_i \) if it is dominated by a tuple \(\tau_1' \in SKY(S_i) \cup M_i \). In this way, the domination tests between join tuples are reduced, since the join results of a newly accessed tuple \(\tau_1 \) with the tuples \(\tau_1 \in SKY(S_i) \cup M_i \) can be added immediately to the skyline join result without any domination tests. Furthermore, if the newly accessed tuple \(\tau_1 \) is a skyline tuple \(\tau_1 \in SKY(S_i) \), also the join tuples produced by joining \(\tau_1 \) with tuples of \(X_i \) can be added immediately to the skyline join set without any domination tests. Both sets \(SKY(S_i) \) and \(X_i \) are implemented as sorted lists. Maintenance of tuple-set \(M_i \) is achieved by means of two pointers (for the sets \(SKY(S_i) \) and \(X_i \) respectively), which are managed as described previously.

6. ANALYSIS OF PULLING STRATEGIES

As mentioned in the previous section, SFSJ employs a pulling strategy to determine the order in which the two inputs are accessed. The choice of the strategy clearly affects how “deep” SFSJ reaches in its inputs, and hence it is interesting to investigate the existence of optimal strategies that minimize the number of accessed tuples, or equivalently, the amount of I/O performed by the algorithm. In what follows, we present a theoretical analysis of this problem and identify two provably good strategies: simple round-robin, and a novel adaptive strategy that we introduce below. The proofs of all theoretical results can be found in the Appendix.

Adaptive Pulling. The adaptive pulling strategy prioritizes access among the two relations based on the observed data. The main idea is to read tuples from a relation only if there is evidence that the new tuples will help satisfy the termination condition. Intuitively, this prioritization helps the algorithm terminate sooner, thus improving its performance.

Recall that the early termination condition requires each join value present in \(SKY(S_i) \) to be also present in \(MAD(S_j) \) (\(j \neq i \)). Let us assume that the early termination condition does not hold, because there exists a tuple \(\tau_1 \in SKY(S_i) \) for which \(\exists \rho_j \in MAD(S_j) \) such that \(\tau_1, \alpha = \rho_j, \alpha \). Note that \(SKY(S_i) \) can only grow as more tuples are accessed from \(S_i \). Hence, the algorithm
can satisfy the early termination condition with respect to \(\tau \), only by enlarging \(\text{MAD}(S_i) \), i.e., by pulling more tuples from \(R_j \). Based on this property, we define the priority of \(R_i \) as the number of distinct mismatched join values. Formally:

Definition 5. The priority of a relation \(R_i \) is defined as

\[
\text{priority}_{SC}(R_i) = |\text{sky}(S_i) - \text{sky}(\text{MAD}(S_i))|.
\]

The computation of \(\text{priority}_{SC}(R_i) \) can be folded in the evaluation of the termination condition (see Theorem 2). The adaptive pulling strategy always pulls from the relation with the highest priority. Ties are broken based on least current depth. The pulling strategy has two interesting properties. First, \(\text{priority}_{SC}(R_1) = \text{priority}_{SC}(R_2) = 0 \) when the termination condition is satisfied. Second, the strategy will freeze access to an input if it cannot contribute to skyline results currently. As an example, consider again the two relations depicted in Figure 4. For all join values of the tuples in \(\text{sky}(S_1) \), there exists a tuple in \(\text{MAD}(S_2) \) with the same join value. Thus, tuples in \(R_2 - S_1 \) combined with tuples of \(S_1 \) cannot produce any skyline join result. The proposed pulling strategy will freeze access to relation \(R_2 \) (since \(\text{priority}_{SC}(R_2) = 0 \)) and pull from \(R_1 \). No further tuples of \(R_2 \) will be accessed, unless new join values are added to \(\text{sky}(S_1) \).

Optimality Analysis. We first describe the performance metrics that we consider and the associated notions of optimality. We write \(I \) to denote the set of skyline join problem instances. We use \(SJ,A \) to denote the class of deterministic algorithms that solve correctly any problem instance \(I \in I \), and write \(SFSJ \) to denote the set of all instantiations of \(SFSJ \) with a different pulling strategy (\(SFSJ \subseteq SJ,A \)). Given \(I \in I \) and \(A \in SJ,A \), we define \(\text{depth}(A, I, i) \) as the number of tuples accessed from relation \(R_i \) when \(A \) terminates. We also define a total depth metric \(\text{totDepth}(A, I) = \text{depth}(A, I, 1) + \text{depth}(A, I, 2) \). This metric is indicative of the total I/O performed by \(A \), and hence it has a direct correspondence to the efficiency of the algorithm.

We employ two notions of optimality. Let \(h \) be a class of skyline join algorithms. We say that an algorithm \(A \in h \) is optimal if \(\text{totDepth}(A, I) \leq \text{totDepth}(B, I) \) for any instance \(I \in I \) and algorithm \(B \in h \). We say that \(A \) is instance-optimal if there exist constants \(c \) and \(c' \) such that \(\text{totDepth}(A, I) \leq c \cdot \text{totDepth}(B, I) + c' \) for any instance \(I \in I \) and algorithm \(B \in h \). Intuitively, \(A \) always performs within a factor of \(c \) of the optimal algorithm for any instance \(I \). Constant \(c \) is termed the instance-optimality ratio of \(A \).

In the first part of our analysis, we set \(h = SFSJ \) in order to identify optimal strategies for the \(SFSJ \) algorithm. We begin with an examination of the round-robin strategy. In what follows, we use \(SFSJ-RR \) to denote the corresponding instantiation of \(SFSJ \). Our first result states that \(SFSJ-RR \) is instance optimal with a ratio of two. The significance of this finding is that \(SFSJ-RR \) will never perform arbitrarily bad for any problem instance, and thus carries a property of robustness.

Theorem 4. \(SFSJ-RR \) is instance-optimal within \(SFSJ \) and \(I \) with a ratio of two.

A natural question is whether we can identify an optimal pulling strategy. We answer this positively, showing that the \(SC \) pulling strategy (see Definition 5) is optimal. Formally, let \(SFSJ-SC \) be the instantiation of \(SFSJ \) with the \(SC \) strategy.

Theorem 5. \(SFSJ-SC \) is optimal within \(SFSJ \) and \(I \).

In fact, we can show an even stronger result: no other instantiation of \(SFSJ \) will outperform \(SFSJ-SC \) on any input relation. Thus, \(SFSJ-SC \) is optimal in a stronger sense than implied with the \(\text{totDepth} \) metric.

The next part of our analysis considers the performance of pulling strategies within the larger class \(SJ,A \). The goal is now different: instead of comparing pulling strategies to each other, we basically want to compare \(SFSJ \) (with appropriate strategies) against other deterministic algorithms.

We develop our first result for a specific class of problem instances. We define \(I^K \) as the class of problem instances such that at most \(K \) tuples in each input have the same \(f_{\min} \) value. The reason we target this class is due to the access logic of \(SFSJ \), which examines tuples in groups of the same \(f_{\min} \) value. Class \(I^K \) essentially bounds the size of these groups, and hence the amount of data that \(SFSJ \) must read before termination. In this case, we prove that \(SFSJ-RR \) and \(SFSJ-SC \) are instance optimal with a ratio of two.

Theorem 6. Both \(SFSJ-RR \) and \(SFSJ-SC \) are instance optimal within \(SJ,A \) and \(I^K \) with a ratio of two.

Up to this point, our results provide strong evidence for the choice of \(SFSJ-SC \) as the de jure instantiation of \(SFSJ \). \(SFSJ-SC \) employs the optimal access strategy within the instantiations of \(SFSJ \), and hence has the optimal I/O “footprint” in this family. Within the larger context of deterministic algorithms, \(SFSJ-SC \) may not be optimal but it maintains the important property of instance optimality when \(f_{\min} \) values have bounded repetitions.

A favorable case can also be made for \(SFSJ-RR \). The round-robin strategy is instance optimal in all examined cases, and is certainly more efficient than the adaptive pulling strategy which requires the manipulation of sets. Indeed, it is important to point out that all optimality results are with respect to the \(\text{totDepth} \) metric that reflects I/O performance, but the total running time of the algorithm also includes the computational overhead of the pulling strategy.

Can we show similar optimality results for the general class of inputs \(I \)? Unfortunately, the following theorem gives a negative answer.

Theorem 7. There exists no algorithm \(A \in SFSJ \) such that \(A \) is instance-optimal within \(SJ,A \) and \(I \).

The problem is that \(SFSJ \) accesses tuples from each input in groups of the same \(f_{\min} \) value, and the size of these groups can be unbounded in the general case. In turn, this precludes any performance guarantees. The investigation of an instance-optimal skyline join algorithm within \(SJ,A \) and \(I \) remains an interesting direction for future work.

7. EXPERIMENTAL EVALUATION

In this section, we perform an experimental evaluation of the \(SFSJ \) algorithm and we report our main findings. All algorithms are implemented in Java and the experiments run on a machine with an Intel Core2 Quad 2.33GHz processor and 4GB of RAM.

7.1 Experimental Setup

The basic experimental setup employs an instance of the skyline join problem where \(R_1 \times R_2 \) is a many-to-many join. The cardinality of each relation is denoted as \(|R_i|, i = 1, 2 \). Each relation has \(m_i \) (i.e., \(|S_i| = m_i \)).

Data sets and Queries. We generated synthetic data sets in order to study the effect of different data characteristics on the performance of skyline join algorithms. As common in skyline research,
we used uniform (U), correlated (C) and anti-correlated (A) data distribution for the scoring attributes. In addition, we used a clustered (CL) data distribution, where 5 cluster centroids are generated at random and the value of each scoring attribute follows a normal distribution with variance 0.05 and mean equal to the corresponding coordinate of the centroid. We also vary the distribution of join values using a zipfian distribution with parameter ranging from 0 (uniform) to 1 (skewed). Our default setup is: |R_i|=200K, |m|=2, the join selectivity is 10^-3, the zipfian parameter is set to 0, and the data distribution is uniform. Notice that we conducted experiments with different join selectivities and obtained similar results.

In order to test the performance of SFSJ with real data, we used the NBA data set1, which contains statistics of NBA players from 1946 to 2008. We created two data sets termed NBA-1 and NBA-2. In NBA-1, the relations R1 and R2 record performance statistics for players during the regular season on a yearly basis. Relation R1 records the field goals made and free throws, and relation R2 records the number of points and assists. Each relation contains 21384 tuples. The skyline join is performed on attributes {player,year}, and the query tries to identify the best pairs of players on a yearly basis. In NBA-2, R2 is the same as NBA-1, while R1 contains 1307 tuples and records the number of wins and the number of points made by each team in each season. The skyline join is performed on attributes {team,year} and its purpose is to retrieve the best teams and corresponding players on a yearly basis.

Algorithms. We implemented SFSJ with the round-robin (SFSJ-RR) and the adaptive pulling strategies (SFSJ-SC). We also implemented three competitor skyline join techniques. The first is an algorithm (denoted as Naive) that takes as input the initial relations and performs the complete join, while discarding dominated join tuples during processing. The second competitor is the approach of Jin et al. [6], denoted as SMSJ (sort-merge skyline join). We implemented the most efficient of the SMSJ variants, as reported in [6]. This variant first computes the skyline set and the group skylines of each relation (R_i) and then processes each relation sorted (R'_i) with skyline tuples preceding the group skyline tuples after having discarded the remaining tuples. For the necessary skyline computation, we employ the SFS algorithm [4]. SFSJ and SMSJ (through its usage of SFS) require their input to be sorted by fmin and entropy value respectively. The third competitor is the ProgXe algorithm [10]. We implemented the version of ProgXe that employs progressive driven ordering, as reported in [10].

Metrics. Given a problem instance, we employ the following metrics: a) totDepth which is the sum of depths of accessed tuples for both relations, b) the total execution time, c) the number of dominance tests, and d) the total number of generated join results that each algorithm performed for producing the skyline join result.

For our experiments on synthetic data, we report the average of each metric over 10 different instances of the data set. We generate the different instances by keeping the parameters fixed and changing the seeds of the random number generator. We adopt this approach in order to factor out the effects of randomization.

7.2 Experimental Results

Evaluation of Pulling Strategies. In Figure 6, we perform an experiment that aims to quantify the gain of SFSJ-SC compared to SFSJ-RR. Our goal is to gather empirical evidence to complement our theoretical analysis that SFSJ-SC always terminates earlier than any other pulling strategy.

In Figure 6(a), we use the default setup of two scoring attributes per relation (m_1=2 and m_2=2). In all cases, SFSJ-SC performs better than its competitor and stops at a lower depth. We performed the same experiment for m_1=1 and m_2=3 in order to examine the

effect of different number of scoring attributes per relation. Figure 6(b) shows the results. Again, SFSJ-SC performs much better than SFSJ-RR in all setups. It is noteworthy that the increased number of scoring attributes in R_2 for A/A and U/A data distributions makes SFSJ-RR read more tuples in total. In contrast, SFSJ-SC is more robust and is not affected by this setup. We also provide in Figure 6(c) an experiment for evaluating the effect of varying the skewness in the join values. So far, we examined the case that the join values are uniformly distributed (skewness 0). We gradually increase the skewness using a zipf distribution with parameter up to 1. The chart shows that SFSJ-SC consistently outperforms the round-robin pulling strategy, irrespective of skewness in the join values. The measurements for the total time metric followed the same trends as the $totDepth$ metric, and are omitted in the interest of space. Similar results are obtained in Figure 6(d) for the clustered data set, only the absolute values are higher, because any algorithm needs to examine more tuples to compute the skyline join result.

Comparison to Naive. Next, we study the performance of SFSJ-SC compared to the Naive algorithm for all tested data distributions. Figure 7 depicts the results of our comparison. With respect to the $totDepth$ metric (Figure 7(a)), notice that the Naive algorithm always needs to access the complete inputs, therefore its $totDepth$ equals to $|R_1| + |R_2|$. SFSJ-SC always terminates much earlier than Naive, and in the best case (C/C) only accesses less than 1% of the $totDepth$ of Naive. For the demanding A/A data distribution, where any algorithm is prone to go deep to ensure safe termination, SFSJ-SC needs to access more tuples, but still improves Naive by more than 25%. In terms of total time, SFSJ-SC is notably more efficient than Naive, as shown in Figure 7(b). Even in the case of A/A data set, SFSJ-SC is almost two orders of magnitude faster than Naive. The reason is clearly depicted in Figure 7(c) that shows the number of computed join results for each algorithm. SFSJ-SC performs significantly fewer join operations than Naive, because SFSJ-SC avoids many unnecessary join operations by eagerly pruning tuples that cannot produce skyline join results, and exploits the early termination condition to stop accessing the input relations as soon as the complete skyline join result is computed. In Figure 7(d), we provide some interesting statistics that are relevant to the previous performance results. Specifically, we report the number of: skyline join results ($SKY(R_i)$), skyline tuples per relation ($SKY(R_i)$), and group skyline tuples per relation ($SKY(R_i, \alpha)$). Notice that the performance of SFSJ-SC in terms of total time and total joins relates directly to the cardinality of $SKY(R_i)$. Except for the U/C and C/C data sets, we note that the cardinality of $SKY(R_i)$ is high (close to 1000), with highest values for data set A/A. Also, we observe that $SKY(R_i, \alpha)$ is at least one order of magnitude larger than $SKY(R_i)$.

Sensitivity Analysis. The next set of experiments considers the sensitivity of SFSJ with respect to several interesting parameters. We also include Naive as a baseline. In the interest of space, we only show the results for the $totDepth$ metric, and report on the trends of the other two metrics.

We first consider the effect of input cardinality as it increases from 200K to 800K tuples. The results for the two algorithms are shown in Figure 8(a). SFSJ-SC always terminates at an earlier depth than Naive. In terms of total time, SFSJ-SC is consistently more than two orders of magnitude faster than Naive and scales gracefully even when the cardinality increases by a factor of 4. The same result is obtained for the number of total join operations performed by each algorithm to produce the skyline join result. SFSJ-SC is highly efficient and is practically unaffected by the increased cardinality, whereas Naive scales poorly. Figure 8(b) studies the effect of increasing the number of scoring attributes. SFSJ-SC terminates earlier than Naive in all setups. An increased number of scoring attributes causes SFSJ-SC to scan more tuples, which is expected as the skyline and group skyline tuples increase rapidly with increasing dimensionality.

Comparative Study to SMSJ. Figure 9 presents the results of a comparative study between SFSJ-SC and the SMSJ algorithm [6]. We study the scalability of both algorithms for increased number of scoring attributes, from 3 to 7. We do not report results on the $totDepth$ metric, since SMSJ computes the skyline over relations that result from a transformation of the original relations.

Figure 9(a) shows the number of skyline join results, skyline and group skyline tuples in the data set, in order to aid the interpretation of the experimental results. All values increase with the number of scoring attributes. Notice that the number of skyline join results increases significantly as the number of scoring attributes grows. In Figure 9(b), we measure the total time of SFSJ-SC versus SMSJ. Our algorithm is faster than SMSJ, due to the non-negligible processing cost of SMSJ for computing the skyline and group skyline tuples. This is clearly demonstrated in Figure 9(c), where the number of total join operations that each algorithm performs is shown. Notice that SMSJ-SC requires slightly fewer join operations than SMSJ, although SMSJ operates only on the skyline and group skyline tuples of each relation. This is a strong argument in favor of a) the online pruning achieved by SFSJ due to sorted access, and b) the efficiency of the stopping condition that avoids redundant accesses on the input relations.

Comparative Study to ProgXe. In Figure 10, we compare the performance of SFSJ to ProgXe [10] for different data distributions. We use 20K tuples per relation and $m_1=m_2=2$ scoring attributes. We set the number of input and output partitions per dimension to 10 and 20 respectively. We note that there is no way to tune these parameters, unless one evaluates all possible values. Figure 10(a) shows that in all tested data distributions ProgXe needs to exhaust both inputs to ensure that the complete and correct result set is reported. Although ProgXe avoids processing all possible combinations of input partitions, it still accesses each input partition at least once, hence it cannot terminate early (in contrast to SFSJ).

Figure 10(b) depicts the number of dominance tests employed by each algorithm. Clearly, ProgXe performs significantly more dom-

Figure 10: Comparison of SFSJ to ProgXe algorithm.

(a) Depths.

(b) Dominance tests.

(c) Total joins.

(d) Depths.

8. CONCLUSIONS

In this paper, we study the problem of computing the skyline set of a join assuming that the join inputs are accessed in sorted order. We introduced the SFSJ algorithm that combines several nice properties: it avoids useless join computation; it generates the results progressively; it can terminate early; and, it has strong optimality guarantees for its performance. The experimental results validated the effectiveness of SFSJ and demonstrated its numerous advantages over competitor techniques.

Acknowledgments. This work was supported in part by the National Science Foundation under Grant No. IIS-0447966.

References

APPENDIX

A. PROOFS OF RESULTS IN SECTION 6

Our proofs make use of the following implications that are trivial to prove: \(\tau_i \in \text{MAD}(S_i) \Rightarrow \forall \rho_i \in R_i - S_i(\tau_i \prec \rho_i) \) and \(\text{MAD}(S_i) \neq \emptyset \Rightarrow S_i \cap S_j \neq \emptyset, R_i \). We also employ the notation \(i \) to denote the input index \{ 1, 2 \} \(- \{ i \} \) for \(i \in \{ 1, 2 \} \).

We begin by proving three auxiliary lemmata.

Lemma 3. \(\max_{j=1,2} \text{depth}(\text{SFSJ-RR}, I, j) \leq \max_{j=1,2} \text{depth}(A, I, j) \) for all \(I \in T \) and \(A \in \text{SFSJ} \).
proof. By contradiction. Define $d_k^A = \max_{x=1..2} \text{depth}(A, I, j)$ and assume that $d_k < \max_{x=1..2} \text{depth}(SFSJ-RR, I, j)$. It follows that $SFSJ-RR$ pulls at depth $d_k^A + 1$ on one input i. Let p_1, p_2 be the depths of $SFSJ-RR$ just before this happens (hence, $p_1 = d_k^A$), and let S_1, S_2 denote the corresponding tuple-sets. Define S_1^A, S_2^A as the tuple-sets that A has examined when it terminates. It holds that $d_k^A \leq d_k^A = p_1 \leq p_2$, where the last inequality follows from the round-robin strategy. We conclude that A has examined a subset of tuples observed by $SFSJ-RR$.

We know that A satisfies the stopping condition and hence $\text{MAD} (S_1^A) \neq \emptyset$. Given that $S_1 \supseteq S_2^A \supseteq \text{MAD} (S_1^A) \neq \emptyset$, we can assert that $\text{SKY} (S_1) = \text{SKY} (R_i) = S_1^A$). The following implication follows immediately:

$$\pi_{\alpha} (\text{SKY} (S_1^A)) - \pi_{\alpha} (\text{MAD} (S_1^A)) = 0 \Rightarrow \pi_{\alpha} (\text{SKY} (S_1)) - \pi_{\alpha} (\text{MAD} (S_1)) = 0$$

We can thus assert that the stopping condition must also be true for S_1 and S_2, which contradicts our assumption that $SFSJ-RR$ pulls past p_1. □

Lemma 4. $\text{depth} (SFSJ-SC, I, j) \leq \text{depth} (A, I, j)$ for all $I \in T$, $A \in SFSJ$ and $j = 1, 2$.

Proof. By contradiction. Let us assume that A stops earlier on input k. Define $d_A^1 = \text{depth} (A, I, j)$, and let S_1^A, S_2^A be the observed tuple-sets when A terminates. Clearly, the stopping condition is true for S_1^A and S_2^A.

Let S_1, S_2 be the observed tuples for $SFSJ-SC$ just before it pulls at depth $d_A^1 + 1$. We have that $S_k = S_k^A$, and it must also hold that $S_k \subseteq S_1^A$, otherwise the stopping condition would be true for $SFSJ-SC$ as well. Hence, $\text{SKY} (S_1) \subseteq \text{SKY} (S_1^A)$.

Since the stopping condition is satisfied when A terminates, it follows that $\pi_{\alpha} (\text{SKY} (S_1^A)) - \pi_{\alpha} (\text{MAD} (S_1^A)) = 0$, for $j = 1, 2$.

Given that $\text{SKY} (S_1^A) \supseteq \text{SKY} (S_1)$ and $\text{MAD} (S_1) = \text{MAD} (S_1^A)$, we conclude that $\pi_{\alpha} (\text{SKY} (S_1)) - \pi_{\alpha} (\text{MAD} (S_1)) = 0$. This implies that $\text{priority}_{SC} (R_k) = 0$. However, since $\text{priority}_{SC} (R_k) \geq \text{priority}_{SC} (R_1) \geq 0$ (SFSJ-SC pulls from relation R_k next), it must hold that $\text{priority}_{SC} (R_k) = 0$, which in turn means that the stopping condition is satisfied with S_1 and S_2. This contradicts our assumption that A pulls past depth $d_A^1 + 1$. □

Lemma 5. $\max_{j=1, 2} \text{depth} (SFSJ-RR, I, j) \leq \max_{j=1, 2} \text{depth} (A, I, j) + K$ for all $I \in T^K$ and $A \in SJA$.

Proof. Let k be the input index on which A pulls the most tuples. Let m be defined similarly for $SFSJ-RR$. We will assume that $\text{depth} (SFSJ-RR, I, m) > \text{depth} (A, I, k) + K$ and show that this leads to a contradiction.

Let p_1 and p_2 be the depths of $SFSJ-RR$ right before it pulls past depth $\text{depth} (A, I, k) + K$ on input m. Let S_1 and S_2 denote the corresponding sets of seen tuples. Define d_1^A, d_2^A as the termination depths of A. The following is true: $p_m = d_k^A + K \geq d_m^A + K$, and $p_m \geq p_m$, due to the round-robin strategy. We conclude that $p_m \geq d_m^A + K$. Since both p_1 and p_2 exceed K, it means that $SFSJ-RR$ has witnessed a change of fmin value in both inputs, and hence $S_1 \neq \emptyset$ and $S_2 \neq \emptyset$.

Sets S_1 and S_2 do not satisfy the stopping condition, since $SFSJ-RR$ pulls another tuple. This gives rise to two cases. In each case, we will construct a new instance I' on which A commits a mistake. This yields the contradiction that completes the proof, as we have assumed that A is a correct algorithm.

Case 1: $\pi_{\alpha} (\text{SKY} (S_1)) - \pi_{\alpha} (\text{MAD} (S_1)) \neq 0$ Since $\text{SKY} (S_1) \neq \emptyset$, there exists a tuple $\tau_{m, \alpha} \in \text{SKY} (S_1)$ such that $\tau_{m, \alpha} \not\in \pi_{\alpha} (\text{MAD} (S_1))$. Let τ_{m} denote the $(d_k^A + 1)$-th tuple of R_0. We construct the new instance I' from I by substituting τ_{m} with a new tuple τ_{m}' such that: $\tau_{m}' = y$, where $y \notin \pi_{\alpha} (\text{MAD} (S_1))$. We conclude that $\tau_{m} \not\in \tau_{m}'$, must appear in the solution for I', since τ_{m} appears in the global skyline and τ_{m}' in a group skyline.

Case 2: $\pi_{\alpha} (\text{SKY} (S_1)) - \pi_{\alpha} (\text{MAD} (S_1)) \neq 0$ Following the same reasoning as before, we construct I' by altering the $(d_k^A + 1)$-th tuple in R_0.

In both cases, I' changes the tuple at depth $d_k^A + 1$ in one of the two inputs. This tuple is never accessed by A and also leads to the generation of a new result. It follows that A will compute the wrong solution.

We now proceed with the proofs of the main theorems.

Proof of Theorem 4 We use Lemma 3. Let d_1 and d_2 be the termination depths of $SFSJ-RR$ and define d_1^A and d_2^A similarly for A.

$\text{totDepth} (SFSJ-RR, I) = d_1 + d_2 \leq 2 \cdot \max (d_1, d_2) \leq 2 \cdot \max (d_1^A, d_2^A) \leq 2 \cdot \text{MAD} (A, I) \leq 2 \cdot \text{totDepth} (A, I)$ □

Proof of Theorem 5 The proof follows directly from Lemma 4. □

Proof of Theorem 6 We use Lemma 5. Let d_1 and d_2 denote the termination depths of $SFSJ-RR$, and define d_1^A and d_2^A similarly for A.

$\text{totDepth} (SFSJ-RR, I) = d_1 + d_2 \leq 2 \cdot \max (d_1, d_2) \leq 2 \cdot \max (d_1^A, d_2^A) + 2K \leq 2 \cdot \text{totDepth} (A, I) + 2K$

This proves that $SFSJ-RR$ is instance optimal, since $2K$ can be treated as a constant that does not depend on A or I. The instance optimality of $SFSJ-SC$ follows directly by Lemma 4. □

Proof of Theorem 7 Consider the following instance in T.

<table>
<thead>
<tr>
<th>R_1</th>
<th>α</th>
<th>β_1</th>
<th>β_2</th>
<th>R_2</th>
<th>α</th>
<th>β_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1^A</td>
<td>a</td>
<td>.2</td>
<td>.1</td>
<td>τ_2^A</td>
<td>a</td>
<td>.1</td>
</tr>
<tr>
<td>τ_1^B</td>
<td>a</td>
<td>.1</td>
<td>.2</td>
<td>τ_2^B</td>
<td>b</td>
<td>.2</td>
</tr>
<tr>
<td>τ_3^B</td>
<td>b</td>
<td>.3</td>
<td>.3</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_{n+4}^1</td>
<td>b</td>
<td>.5</td>
<td>.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suppose that an algorithm $B \in SJA$ accesses the following prefixes: $S_1^A = \{\tau_1^A, \tau_1^B, \tau_1^A\}$ from R_1 and $S_2^A = \{\tau_2^A, \tau_2^B\}$ from R_2. Based on the sorted access model, B can reason that $\text{SKY} (R_1) = \{\tau_1^A, \tau_2^A\}$, since τ_1^A will dominate any other tuple in $R_1 - S_1^A$. Similarly, it is straightforward to verify that $\text{SKY} (R_2) = \{\tau_2^A\}$. Since $\text{SKY} (R_1) \ni \text{SKY} (R_2) \equiv \text{SKY} (R_1) \times \text{SKY} (R_2)$ for this case, B can safely terminate since there are no more skyline results.

Consider an algorithm $A \in SJA$. In order to make $\text{MAD} (S_1) \neq \emptyset$, and thus have a chance to satisfy the stopping condition, the algorithm has to access at least until τ_{n+4}^A. Hence, $\text{totDepth} (A, I) \geq 5$, which in turn implies that A cannot be instance-optimal. □