Round Corner
Department of Computer and Information Science


Recognition of Sleep Patterns on Sensor Data Streams (HUNT4)

Data captured by body worn sensors provides an excellent opportunity for assessing the physical activity of patients and hence creating behavioral profiles over time. Particularly patients with chronic disease can receive tailored advice on how to increase their activity and hence improve their overall life quality.
The focus and challenge for this project and master thesis is the selection, implementation and improvement of pattern recognition and data mining techniques to identify sleep patterns from sensor data. The data will be provided by NTNUs medical faculty (DMF), while this thesis should focus on the data analysis. The captured data sets will be streaming data from two acceleration sensors recorded at 100 Hz.
During this work you will build on previous work that does a basic classification of awake/sleep phases and extend the model finding various sleep patterns. Also investigating different sleep stages is a possibility. The implementation will be evaluated in collaboration with DMF, who is also providing background information on the data.
Once the experimental set up is created, different existing algorithms should be evaluated and their strength and weaknesses pointed out. Based on this analysis, a follow-up master thesis can be defined focusing on improving existing algorithms and validated in a real world setting.

Sketch for the project thesis

  • Literature review on existing pattern recognition and data mining techniques
  • Selection of framework
  • Implementation of selected algorithms
  • Evaluation of accuracy for detections in real data

Sketch for a follow-up master thesis

  • Strength and weaknesses of existing approaches
  • Further development of existing algorithms to increate the accuracy
  • Evaluation using real data sets

For more information on this thesis, feel free to contact Kerstin Bach ( We will then set the specific topic and scope of your thesis together.



Kerstin Bach Kerstin Bach
Associate Professor
312 IT-bygget
735 97410 
NTNU logo