Probabilistic AI
Lecture 2: Disentanglement in the variational auto encoder

Helge Langseth*

Jan. 2021

*Kudos to Anna Rodum Bjøru, NTNU. Slides made together with Thomas D. Nielsen, Aalborg University.
Summary from yesterday
Each node is a random variable

Edges indicate “influence” (Math-def: Graph encodes cond.indep. statements)

For each variable Y_k, we must define $p(y_k \mid \text{pa}(y_k))$.

The full model is defined as $p(y) = p(y_1, \ldots, y_n) = \prod_{i=1}^{n} p(y_i \mid \text{pa}(y_i))$.

Markov properties \Leftrightarrow Factorisation property.
Our focus yesterday was on **approximate Inference**: How to efficiently approximate \(p(z \mid x) \) by a simpler \(q(z \mid x) \).

- Looking for a “good” approximation means minimizing \(\text{KL} (q(z) \mid\mid p(z \mid x)) \).
 - The distance measure has weaknesses, in particular **zero-forcing** behaviour.
 - Instead of minimizing the KL, we reformulated to maximizing the ELBO.

- Our set of candidate functions is \(Q = \{ \text{All distributions that factorize} \} \).
 - Each local distribution \(q_i(z_i \mid \lambda_i) \) needs some pre-selected distributional family.
 - ... while we get to play with the parameters \(\lambda_i \).
 - Be aware that the MF assumption can reinforce the zero-forcing behaviour.

- We decided to optimize the parameters using BBVI (stochastic gradient ascent).
 - BBVI has some issues on its own, that we did not cover.

- We are now ready to combine this with other “compatible” pieces of machine learning.
Plan for my part of the winter-school

Day 1: Introduction to variational inference and the ELBO
Dive into the mathematical details of Probabilistic AI, understand the foundation, and investigate the effects of some of the “shortcuts” being made.

- **Approximate inference** via the KL divergence, a.k.a. Variational Bayes
- The **mean-field** approach to Variational Bayes
- **Black Box variational inference**

Day 2: Disentanglement in the variational auto encoder
Devise flexible models for representation learning, and consider their transparency.

- **Variational Auto Encoders**
- **Disentanglement:** What, why, how?
- **Probabilistic Programming Languages**
Variational Auto-Encoders
The factor analysis model, and an extension

\[Z \sim \mathcal{N}(0, I) \]

\[X | z \sim \mathcal{N}(\mu + W^T z, \Sigma) \]

- The FA model posits that the data \(X \) can be generated from **independent factors** \(Z \) plus some sensor-noise: \(X | z = \mu + W^T z + \epsilon; \epsilon \sim \mathcal{N}(0, \Sigma) \).
- **Simple algorithms** to find estimators \(\hat{\mu}, \hat{W}, \) and \(\hat{\Sigma} \), and closed form expression for \(p(z | x) \) (which is still a Gaussian).
- The idea is that the factors can be **interpreted** and used for **downstream tasks**. Typically a sparse \(W \) eases the interpretation.

Variational Auto-Encoders

- From Factor Analysis to Variational Auto-Encoders (VAEs) allow the distribution \(p(x | z) \) to be arbitrarily complex – represented by a DNN.
- We no longer have analytic estimators for model parameters, cannot easily calculate \(p(z | x) \), and it is therefore harder to interpret the factors \(Z \).
- **Why that name?** VAEs are called auto-encoders because we can train them by "re-creating" inputs via \(x \rightarrow p(z | x) \rightarrow z \rightarrow p(x | z) \rightarrow \hat{x} \) (and expect to see \(x \approx \hat{x} \)).
- It is a variational auto-encoder since we use the variational objective while learning.
The factor analysis model, and an extension

\[Z \sim \mathcal{N}(0, I) \]

\[X \mid z \sim \mathcal{N}(\mu + W^T z, \Sigma) \]

- The FA model posits that the data \(X \) can be generated from **independent factors** \(Z \) plus some sensor-noise: \(X \mid z = \mu + W^T z + \epsilon; \epsilon \sim \mathcal{N}(0, \Sigma) \).
- **Simple algorithms** to find estimators \(\hat{\mu}, \hat{W}, \) and \(\hat{\Sigma} \), and closed form expression for \(p(z \mid x) \) (which is still a Gaussian).
- The idea is that the factors can be **interpreted** and used for **downstream tasks**. Typically a sparse \(W \) eases the interpretation.

Example: Grades

We observe \(x = \{ \text{Math}, \text{English}, \text{Computer Science}, \text{German} \} \) for \(N \) students, and will examine the data with an FA. Say the model gives us

\[
\mathbb{E}[Z \mid x] = \begin{bmatrix}
0.25 & 0.25 & 0.25 & 0.25 \\
0.50 & 0 & 0.35 & 0.15 \\
\end{bmatrix}.
\]

Possible interpretation: \(Z_1 \approx \) “Eagerness to learn” and \(Z_2 \approx \) “Logical thinking”.

Probabilistic AI – Lecture 2

Variational Auto-Encoders
The factor analysis model, and an extension

\[Z \sim \mathcal{N}(0, I) \]

\[X | z \sim \mathcal{N}(\mu + W^T z, \Sigma) \]

- The FA model posits that the data \(X \) can be generated from **independent factors** \(Z \) plus some sensor-noise: \(X | z = \mu + W^T z + \epsilon; \epsilon \sim \mathcal{N}(0, \Sigma) \).

- **Simple algorithms** to find estimators \(\hat{\mu}, \hat{W}, \) and \(\hat{\Sigma} \), and closed form expression for \(p(z | x) \) (which is still a Gaussian).

- The idea is that the factors can be **interpreted** and used for **downstream tasks**. Typically a sparse \(W \) eases the interpretation.

How do we feel about the FA model?

The good: Data is compressed into a (hopefully) interpretable low-dimensional representation.

The bad: The model is restrictive: Assumes everything is Gaussian, and that the relationship from \(Z \) to \(X \) has to be linear.
The factor analysis model, and an extension

\[Z_1 \rightarrow X_1 \]
\[Z_2 \rightarrow X_2 \]
\[Z_1 \rightarrow X_3 \]
\[Z_2 \rightarrow X_4 \]

VAE: \(Z \sim \) “Whatever”, typically still \(\mathcal{N}(0, I) \)

VAE: \(X \mid z \sim \) “Whatever”

- The FA model posits that the data \(X \) can be generated from independent factors \(Z \) plus some sensor-noise: \(X \mid z = \mu + W^\top z + \epsilon; \epsilon \sim \mathcal{N}(0, \Sigma) \).
- Simple algorithms to find estimators \(\hat{\mu}, \hat{W}, \) and \(\hat{\Sigma} \), and closed form expression for \(p(z \mid x) \) (which is still a Gaussian).
- The idea is that the factors can be interpreted and used for downstream tasks. Typically a sparse \(W \) eases the interpretation.

From Factor Analysis to Variational Auto-Encoders

VAEs allow the distribution \(p(x \mid z) \) to be arbitrarily complex – represented by a DNN. We no longer have analytic estimators for model parameters, cannot easily calculate \(p(z \mid x) \), and it is therefore harder to interpret the factors \(Z \).
The factor analysis model, and an extension

The FA model posits that the data X **can be generated from independent factors** Z **pluss some sensor-noise:** $X \mid z = \mu + W^T z + \epsilon; \epsilon \sim \mathcal{N}(0, \Sigma)$.

Simple algorithms to find estimators $\hat{\mu}$, \hat{W}, and $\hat{\Sigma}$, and closed form expression for $p(z \mid x)$ (which is still a Gaussian).

The idea is that the factors can be interpreted and used for downstream tasks. Typically a sparse W eases the interpretation.

From Factor Analysis to Variational Auto Encoders

VAEs allow the distribution $p(x \mid z)$ to be **arbitrarily complex** – represented by a DNN. We no longer have analytic estimators for model parameters, cannot easily calculate $p(z \mid x)$, and it is therefore harder to interpret the factors Z.

Why that name?

VAEs are called **auto-encoders** because we can train them by “re-creating” inputs via the process $x \xrightarrow{p(z \mid x)} z \xrightarrow{p(x \mid z)} \hat{x}$ (and expect to see $x \approx \hat{x}$).
The factor analysis model, and an extension

- The FA model posits that the data X can be generated from independent factors Z plus some sensor-noise: $X | z = \mu + W^T z + \epsilon; \epsilon \sim \mathcal{N}(0, \Sigma)$.
- Simple algorithms to find estimators $\hat{\mu}$, \hat{W}, and $\hat{\Sigma}$, and closed form expression for $p(z | x)$ (which is still a Gaussian).
- The idea is that the factors can be interpreted and used for downstream tasks. Typically a sparse W eases the interpretation.

From Factor Analysis to Variational Auto Encoders

VAEs allow the distribution $p(x | z)$ to be arbitrarily complex – represented by a DNN. We no longer have analytic estimators for model parameters, cannot easily calculate $p(z | x)$, and it is therefore harder to interpret the factors Z.

Why that name?

VAEs are called auto-encoders because we can train them by “re-creating” inputs via the process $x \xrightarrow{p(z | x)} z \xrightarrow{p(x | z)} \hat{x}$ (and expect to see $x \approx \hat{x}$).

It is a variational auto-encoder since we use the variational objective while learning.
The conditional distribution

- Recall that a Bayesian network specification includes the conditional probability distribution $p(x_i \mid pa(x_i))$ for each variable X_i.
- Typically the CPD is assumed to belong to some distributional family out of convenience — e.g., to obtain conjugacy.
- Deep Bayesian models allow the CPDs to be represented by DNNs.
- Since *inference is optimization*, we can adjust the parameters of the DNN and do inference in the model *interchangeably* while learning.
Building-blocks of a Variational Auto Encoder

The conditional distribution

- Recall that a Bayesian network specification includes the conditional probability distribution \(p(x_i \mid pa(x_i)) \) for each variable \(X_i \).
- Typically the CPD is assumed to belong to some distributional family out of convenience — e.g., to obtain conjugacy.
- Deep Bayesian models allow the CPDs to be represented by DNNs.
- Since inference is optimization, we can adjust the parameters of the DNN and do inference in the model interchangeably while learning.

The model structure

- Bayesian models often leverage latent variables. These are variables \(Z \) that are unobserved, yet influence the observed variables \(X \).
- We therefore consider a model of two components:
 - \(Z \) follows some distribution \(p_{\theta}(z \mid \theta) \) parameterized by \(\theta \).
 - \(X \mid Z \) follows some distribution \(p_{\theta}(x \mid g_{\theta}(z)) \) where \(g_{\theta}(z) \) is a function represented by a deep neural network.
- In VAE lingo, \(Z \) in a coded version of \(X \). Therefore, \(p_{\theta}(x \mid g_{\theta}(z)) \) is the decoder model. Similarly, the process \(X \sim Z \) is the encoder.
The Variational Auto Encoder (VAE)

Model of interest

- We assume parametric distributions $p_\theta(z \mid \theta)$ and $p_\theta(x \mid z, \theta) = p_\theta(x \mid g_\theta(z))$, where $g_\theta(\cdot)$ for instance may be represented using a deep neural network.
- No further assumptions made about the generative model.
- We want to learn θ to maximize the model’s fit to the data-set $\mathcal{D} = \{x_1, \ldots, x_N\}$.
- We cannot calculate $p(z \mid x)$ analytically, so define the variational approximation $q_\lambda(z \mid x, \lambda)$. It will be represented by a DNN with parameters λ.

Obvious strategy: Optimize $L(q)$ to choose λ and θ, where $L(q) = -E_{q_\lambda(z \mid x, \lambda)}[\log q_\lambda(z \mid x, \lambda)p_\theta(z, x \mid \theta)]$.
We assume parametric distributions $p_{\theta}(z | \theta)$ and $p_{\theta}(x | z, \theta) = p_{\theta}(x | g_{\theta}(z))$, where $g_{\theta}(\cdot)$ for instance may be represented using a deep neural network.

No further assumptions made about the generative model.

We want to learn θ to maximize the model’s fit to the data-set $D = \{x_1, \ldots, x_N\}$.

We cannot calculate $p(z | x)$ analytically, so define the variational approximation $q_{\lambda}(z | x, \lambda)$. It will be represented by a DNN with parameters λ.

Obvious strategy:
Optimize $L(q)$ to choose λ and θ, where

$$L(q) = -\mathbb{E}_{q_{\lambda}} \left[\log \frac{q_{\lambda}(z | x, \lambda)}{p_{\theta}(z, x | \theta)} \right]$$

Remember:
- We will parameterize $p_{\theta}(x | z, \theta)$ as a DNN with inputs z and weights defined by θ;
- ... and $q_{\lambda}(z | x, \lambda)$ as a DNN with inputs x and weights defined by λ.

The Variational Auto Encoder (VAE)
We will now look at ELBO for a single observation x_i, and later maximize the sum of these contributions.

For a given x_i we get

$$
\mathcal{L}(x_i) = -\mathbb{E}_{q_\lambda} \left[\log \frac{q_\lambda(z | x_i, \lambda)}{p_\theta(z, x_i | \theta)} \right] \\
= -\mathbb{E}_{q_\lambda} [\log q_\lambda(z | x_i, \lambda)] + \left\{ \mathbb{E}_{q_\lambda} [\log p_\theta(z)] + \mathbb{E}_{q_\lambda} [\log p_\theta(x_i | z, \theta)] \right\} \\
= -KL(q_\lambda(z | x_i, \lambda) || p_\theta(z)) + \mathbb{E}_{q_\lambda} [\log p_\theta(x_i | z, \theta)]
$$

The two terms penalizes:

- ... a posterior over z far from the prior $p_\theta(z)$
- ... and poor reconstruction ability – averaged over $q_\lambda(z | x_i, \lambda)$
Calculating the ELBO terms

\[\mathcal{L}(x_i) = -\text{KL} (q_\lambda(z | x_i, \lambda) \| p_\theta(z)) + \mathbb{E}_{q_\lambda} [\log p_\theta(x_i | z, \theta)] \]

- The **KL-term** is dependent on the distributional families of \(p_\theta(z) \) and \(q_\lambda(z | x_i, \lambda) \).
 - One can assume a simple shape, like:
 - \(p_\theta(z) \) being Gaussian with zero mean and isotropic covariance;
 - \(q_\lambda(z | x_i, \lambda) \) is a Gaussian with mean and variance determined by a DNN.
 - Simplicity is **not required** as long as the KL can be calculated (numerically).
Calculating the ELBO terms

\[\mathcal{L}(x_i) = -KL\left(q_\lambda(z \mid x_i, \lambda) \Vert p_\theta(z)\right) + \mathbb{E}_{q_\lambda}[\log p_\theta(x_i \mid z, \theta)] \]

- The **KL-term** is dependent on the distributional families of \(p_\theta(z) \) and \(q_\lambda(z \mid x_i, \lambda) \).
 - One can assume a simple shape, like:
 - \(p_\theta(z) \) being Gaussian with zero mean and isotropic covariance;
 - \(q_\lambda(z_\ell \mid x_i, \lambda) \) is a Gaussian with mean and variance determined by a DNN.
 - Simplicity is **not required** as long as the KL can be calculated (numerically).

- The **reconstruction** term involves two separate operations:
 - For a given \(z \) evaluate the log-probability of the data-point \(x_i \), \(\log p_\theta(x_i \mid z, \theta) \). The distribution is parameterized by a DNN, getting its weights from \(\theta \).
 - The expectation \(\mathbb{E}_{q_\lambda}[\cdot] \) is approximated by a random sample that we generate from \(q_\lambda(z \mid x_i, \lambda) \):
 \[
 \mathbb{E}_{q_\lambda}[\log p_\theta(x_i \mid z, \theta)] \approx \frac{1}{M} \sum_{j=1}^{M} \log p_\theta(x_i \mid \tilde{z}_{i,j}, \theta),
 \]
 where \(\tilde{z}_{i,j} \) are samples from \(q_\lambda(\cdot \mid x_i, \lambda) \). Typically \(M \) is small (e.g., \(M = 1 \)).
ELBO for VAEs

Sample from $q_{\lambda}(\cdot | x_i, \lambda)$

Increased $\mathcal{L}(x_i)$

Update θ, λ wrt. $\nabla_{\theta, \lambda} \mathcal{L}(x_i)$

$\mathbb{E}_{q_{\lambda}} [p_{\theta}(x_i | z, \theta)]$

Approximate

$\{\tilde{z}_i, \cdot \}$
Each x_i is a binary vector of 784 values – **binarized** and **flattened** MNIST.

When seen as a 28×28 array, each x_i is a picture of a handwritten digit (“0” – “9”).
Fun with MNIST – The model

- Each \mathbf{x}_i is a binary vector of 784 values – **binarized** and **flattened** MNIST.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit (“0” – “9”).

![MNIST digits](image)

- Encoding is – for now – in **two** dimensions. A priori $\mathbf{z}_i \sim p_0(\mathbf{z}_i) = \mathcal{N}(0, \mathbf{I}_2)$.
- The approximate expectation in the ELBO is calculated using $M = 1$ sample per data-point.
- The **encoder network** $\mathbf{X} \xrightarrow{} \mathbf{Z}$ is a 256 + 64 neural net with ReLU units.
 - The 64 outputs go through a linear layer to define $\mu_\lambda(\mathbf{x}_i)$ and $\log \Sigma_\lambda(\mathbf{x}_i)$.
 - Finally, $q_\lambda (\mathbf{z}_i \mid \mathbf{x}_i, \lambda) = \mathcal{N}(\mu_\lambda(\mathbf{x}_i), \Sigma_\lambda(\mathbf{x}_i))$.

![Encoder network diagram](image)
Fun with MNIST – The model

- Each x_i is a binary vector of 784 values – **binarized** and **flattened** MNIST.
- When seen as a 28×28 array, each x_i is a picture of a handwritten digit ("0" – "9")

![Image with handwritten digits 5 7 4 4 2 6 3 5 9 2]

- Encoding is – for now – in **two** dimensions. A priori $Z_i \sim p_\theta(z_i) = \mathcal{N}(0_2, I_2)$.
- The approximate expectation in the ELBO is calculated using $M = 1$ sample per data-point.
- The **encoder network** $X \rightarrow Z$ is a $256 + 64$ neural net with ReLU units.
 - The 64 outputs go through a linear layer to define $\mu_\lambda(x_i)$ and $\log \Sigma_\lambda(x_i)$.
 - Finally, $q_\lambda(z_i \mid x_i, \lambda) = \mathcal{N}(\mu_\lambda(x_i), \Sigma_\lambda(x_i))$.
- The **decoder network** $Z \rightarrow X$ is a $64 + 256$ neural net with ReLU units.
 - The 256 outputs go through a linear layer to define logit ($p_\theta(z_i)$).
 - Then $p_\theta(x_i \mid z_i, \theta)$ is Bernoulli with parameters $p_\theta(z_i)$.

$$z_i : 2 \text{ dim} \xrightarrow{\text{ReLU}} \text{Hidden, 64-d} \xrightarrow{\text{ReLU}} \text{Hidden, 256-d} \xrightarrow{\text{Linear}} \text{logit}(p_i), 784-d \xrightarrow{} p_\theta(x_i \mid z_i) = \text{Bernoulli}(p_i), 784-d$$
Trying to reconstruct \mathbf{x} by $E_{p\theta}[\mathbf{X} | \mathbf{Z} = E_{q\lambda}[\mathbf{Z} | \mathbf{x}_i]]$

An initial indication of performance:

1. For some \mathbf{x}_0, calculate $\mathbf{z}_0 \leftarrow E_{q\lambda}[\mathbf{Z} | \mathbf{X} = \mathbf{x}_0]$
2. ... and $\tilde{\mathbf{x}} \leftarrow E_{p\theta}[\mathbf{X} | \mathbf{Z} = \mathbf{z}_0]$.
3. Compare \mathbf{x}_0 and $\tilde{\mathbf{x}}$ visually.

Training examples (after 500 epoch)

Examples from a separate test-set
Disentangled representations
What is a disentangled representation?

Representation learning:

- Representation learning is to find a mapping $r_\theta : \mathcal{X} \mapsto \mathcal{R} \subseteq \mathbb{R}^d$ parameterized by θ, where $r_\theta(x)$ is the representation of an observation x.

- The underlying *manifold assumption* declares that while observations may be observed in an high-dimensional space \mathcal{X}, it (mostly) lives on a (smooth) low-dimensional manifold. The goal is to represent an image of this manifold on \mathcal{R}.

 Supervised: The representation is an intermediate step towards, e.g., a classification – for instance an intermediate layer in a DNN.

 Unsupervised: The representation is created without necessarily knowing its purpose later on. **This will be our focus.**
What is a disentangled representation?

Representation learning:
- Representation learning is to find a mapping \(r_\theta : \mathcal{X} \mapsto \mathcal{R} \subseteq \mathbb{R}^d \) parameterized by \(\theta \), where \(r_\theta(x) \) is the representation of an observation \(x \).
- The underlying **manifold assumption** declares that while observations may be observed in an high-dimensional space \(\mathcal{X} \), it (mostly) lives on a (smooth) low-dimensional manifold. The goal is to represent an image of this manifold on \(\mathcal{R} \).

 Supervised: The representation is an intermediate step towards, e.g., a classification – for instance an intermediate layer in a DNN.
 Unsupervised: The representation is created without necessarily knowing its purpose later on. **This will be our focus.**

Disentangled representations:
Assume that an object \(x \) is determined by “**data generative factors**”, e.g., what objects are in a picture, rotation, illumination, etc. Now, a disentangled representation should capture these factors.

 Modularity: A single dim of \(r_\theta(x) \) encodes no more than one data generative factor.
 Compactness: Each data generative factor is encoded by just one dim of \(r_\theta(x) \).
 Explicitness: All data generative factors can be decoded from \(r_\theta(x) \) by a (linear) transformation.
Disentangled representations

Positives:

A disentangled representation $r_{\theta}(\cdot)$ holds the promise to be . . .

- interpretable
- robust towards noise
- useful for efficient learning of downstream tasks
- a representation for masking out “private” generating factors (gender, race, . . .)

. . . and the idea has already been used for, e.g., fair machine learning, concept learning from video, domain adaption/transfer, . . .
Disentangled representations

Positives:

A disentangled representation $r_\theta(\cdot)$ holds the promise to be . . .

- interpretable
- robust towards noise
- useful for efficient learning of downstream tasks
- a representation for masking out “private” generating factors (gender, race, . . .)

. . . and the idea has already been used for, e.g., fair machine learning, concept learning from video, domain adaption/transfer, . . .

Negative: Non-identifiability

- Assume $z = r_\theta(x)$ is a disentangled representation according to the true generating factors of $p(x)$.
- We can create another representation $z' = r_{\theta'}(x)$ so that
 - z and z' are entangled
 - z and z' imply the same $p(x)$
- Observing only samples from $p(x)$, it is impossible to determine which of $r_\theta(\cdot)$ and $r_{\theta'}(\cdot)$ is the better disentangled representation.

\Rightarrow To be useful, $r_\theta(\cdot)$ must be chosen based on inductive bias.
Checking the VAE: Averaged distribution over Z – per class

Using a VAE for representation learning

- The VAE is a **deep generative model**
- ...but can also be seen as a (probabilistic) **representation learning setup**:

 $r_{\lambda}(x) \sim q_{\lambda}(\cdot \mid x, \lambda)$.
Investigations into the representation

Look for **modularity**, **compactness**, and **explicitness**:
- Imagine trips through Z-space, and calculate $E_{p_{\theta}}[X | z]$ for different values of z: Does each dimension “make sense”? Can they be interpreted independently?
- Lots of **quantitative disentanglement metrics** exist as well.
Same results, but with high-dimensional encoding space

Setup:

- Same VAE model, but now \(Z \) has 50 dims.
- Class-specific posterior \(q_{\lambda}(Z = z \mid X = x) \) t-SNE’d down to 2 dims.
- **Animations:** \(\mathbb{E}_{p_\theta}[X \mid z] \) varying a single latent dim (keeping the others at 0).
- Representations are interesting, but unclear if they are **disentangled**.
The MNIST data consists of the images (X) and their classes (which digit, Y).
- We have so far not used the information in Y.
- Now we will assume Y is at least sometimes observed.

The code is extended to have two (a priori) independent parts: Z^X and Z^Y.
- Both Z^X and Z^Y contribute to define X
- Only Z^Y determines the class Y.

The idea is that Z^X is freed up to describe class-independent features.
- We hope that Z^X will capture globally valid and disentangled features describing something like “writing-style”.

Diagram:
- Z^Y connected to Y
- Z^X connected to X
- Z^Y connected to Z^X
- Z^X connected to Z^Y
Conditional generation

Z_0: “Slant”

Z_6: “Top heaviness”

Z_{37}: “Width”

Z_{47}: “Pen thickness”

Process:
- Sample $z^Y_0 \sim p_\theta(z^Y)$.
- Let $z^X = 0$ in all dims except j; vary z^X_j. Calculate $\mathbb{E}_{p_\theta} [X \mid z^X, z^Y_0]$.
Conditional generation

Z_0: “Slant” Z_6: “Top heaviness”

Z_{37}: “Width” Z_{47}: “Pen thickness”

Process:
- Sample $z_0^Y \sim p_\theta(z^Y)$.
- Let $z^X = 0$ in all dims except j; vary z_j^X. Calculate $\mathbb{E}_{p_\theta} [X \mid z^X, z_0^Y]$.
A loose argument based on investigating the objective

The ELBO includes the penalty term $\mathrm{KL} (q(z | x_i) || p(z))$. If $q(z) = \mathcal{N}(\mu, \Sigma)$, $p(z) = \mathcal{N}(0, I)$, and k is the dimensionality of z, then

$$\mathrm{KL} (q || p) = \frac{1}{2} \left[\mu^\top \mu + \mathrm{trace}(\Sigma) - k - \log |\Sigma| \right].$$

If Σ’s diagonal is fixed, $\mathrm{KL} (q || p)$ is minimized for \textbf{independent} Z_j’s.

β-VAE introduces a β to get a new loss (Std. VAE has $\beta = 1$):

$$\mathcal{L}(x_i) = \mathbb{E}_{q\lambda} \left[\log p_\theta(x_i | \theta) \right] - \beta \cdot \mathrm{KL} (q_\lambda(z | x_i) || p_\theta(z))$$
A loose argument based on investigating the objective

The ELBO includes the penalty term $\text{KL} (q(z \mid x_i) \| p(z))$. If $q(z) = \mathcal{N}(\mu, \Sigma)$, $p(z) = \mathcal{N}(0, I)$, and k is the dimensionality of z, then

$$
\text{KL} (q \| p) = \frac{1}{2} \left[\mu^\top \mu + \text{trace}(\Sigma) - k - \log |\Sigma| \right].
$$

If Σ’s diagonal is fixed, $\text{KL} (q \| p)$ is minimized for independent Z_j’s.

β-VAE introduces a β to get a new loss (Std. VAE has $\beta = 1$):

$$
\mathcal{L}(x_i) = \mathbb{E}_{q_\lambda} [\log p_\theta(x_i \mid \theta)] - \beta \cdot \text{KL} (q_\lambda(z \mid x_i) \| p_\theta(z))
$$

There are many other loss-surgery approaches, too...

Dissecting the VAE objective reveals it includes the term

$$
\text{KL} \left(q(z \mid x_i) \| \prod_{j=1}^k q_j(z_j \mid x_i) \right),
$$

where $q_j(z_j \mid x_i)$ is the marginal variational distribution for Z_j. β-TCVAE multiplies that part of the loss with a $\beta \geq 1$.
Setup: The data, x, contains some private ("secret") information s (race, gender, political leaning, religion, ...)

Unsupervised (Left): Find a representation z^X that cleans out all traces of s.

Semisupervised (Right): Ensure that z^X is informative for the class Y; supply z^Y for further downstream processing. Note that z^Y may now “loose” some information about y (as z^X did about s).

Learning objective: Optimize ELBO, similarly as for VAE, but always conditioned on the private information. Add extra penalty if S is predictable from z^X.
disentanglement_lib:

- **Open-source library** for learning disentangled representation by Google (https://github.com/google-research/disentanglement_lib)
- Implements a number of **benchmark models** (like β-VAE, β-TCVAE, ...), and relevant disentanglement metrics.
- Supplies standard **datasets**.
- Includes 10,800 **pre-learned models** (“Reproducing these experiments requires approximately 2.52 GPU years”)
Probabilistic Programming Languages
Pyro and other PPLs

Pyro

Pyro (https://pyro.ai) is a Python library for probabilistic modeling and inference, integrated with Pytorch.

Modeling:
- Directed graphical models
- Neural networks (via `torch.nn`)
- …

Inference:
- Variational inference
- MCMC – including Hamiltonian Monte Carlo, NUTS
- …

…and there are also many other possibilities

- Tensorflow is integrating probabilistic thinking ([tensorflow_probability](https://www.tensorflow.org/probability))
- `pyMC3` is another Python-based alternative using Theano
- `turing.jl` is a new alternative for Julia
- …
Setup:

- We define the generative model using a `model` (which is a stochastic function); use `obs=<data>` to condition on observations.
- The `guide` defines how unobserved variables can be sampled (and thereby define our \(q \)-distribution).
- Learning optimizes parameterizations (typically using high-level abstractions like `pyro.infer.SVI` and `pyro.infer.TraceELBO`).
- Inference is done by gradient descent using an optimizer from Pytorch, e.g. `torch.optim.Adam`.

Code to define the optimization:

```python
svi = SVI(model, guide, optimizer=Adam({lr: 1e-3}), loss=TraceELBO)
```

Code to do the actual training:

```python
for xs in batches:
    losses.append(svi.step(xs))
```
Generative model (model): $Z \sim X$

```python
# The `plate` defines a loop over the observations
with pyro.plate("data"):  
    # Sample latents from the pre-defined prior distribution
    zs = pyro.sample("z",
        dist.Normal(
            torch.zeros(batch_size, self.z_dim),
            torch.ones(batch_size, self.z_dim)
        ).to_event(1))

    # Score the data (x) using the `handwriting style` (z),
    # where `decoder` is a neural network.
    # Note the conditioning using `obs=x`
    probs = self.decoder.forward(zs)
    pyro.sample("x",
        dist.Bernoulli(probs).to_event(1), obs=x)
```

Variational model (guide): $X \sim Z$

```python
# The `plate` defines a loop over the observations
with pyro.plate("data"):  
    # Sample (and score) the latent `handwriting-style`
    # with the variational distribution
    # $q(z|x) = \text{Normal}(\text{loc}(x), \text{scale}(x))$
    loc, scale = self.encoder.forward(xs)
    pyro.sample("z", dist.Normal(loc, scale).to_event(1))
```
Conclusions
If you want to learn more about these things:

Nordic Probabilistic AI School,
June 14th – 18th, 2021
https://probabilistic.ai

Applications open soon!
Deep Learning + Probabilistic modelling = ♡: More robust AI models, resilience towards missing/adversarial examples, uncertainty awareness, . . .

Variational Bayes: VB is a deterministic alternative to sampling for approximate inference in Bayesian models.
- VB seeks the model $q_\lambda(z | \lambda, x) \in Q$ closest to the (unattainable) posterior $p(z | x)$ in terms of a **KL divergence**.
- BBVI performs inference using gradient techniques.

VAEs: A Variational Auto Encoders is an example of a probabilistic AI model.
- It is a deep **generative** model.
- Can be as a representation learner, as it generates “**encodings**” from examples.
- **Disentangled** representations are better for explainability, transparency, and other niceties.

Probabilistic Programming Languages: PPLs are programming languages to describe probabilistic models and perform inference in them.
- **Pyro** is a PPL built on top of Pytorch, and which supports several inference techniques, including BBVI, MCMC.
- Several **alternatives** exist as well.