Deep Learning

Chapter 11 (+ 12...) “Tricks of the trade”

Helge Langseth
helgel@ntnu.no

Disclaimer

• The content in this lecture is mostly based on the book, but also contains some “gut-feeling”, “rules of thumb”, and “urban legends”.

• Some of what I say may therefore be “controversial”:
 • You are allowed to disagree!
 • If you disagree, you may well be right!

• But then again, some slides are from the book, too, and those are obviously correct and just perfect!

What drives success in ML?

Arcane knowledge of dozens of obscure algorithms? Mountains of data?

Knowing how to apply 3-4 standard techniques?

RefGrp

• We need at least 2 people...
Three Step Process

• Use needs to define metric-based goals
• Build an end-to-end system
• Data-driven refinement

Step 1: Identify needs

Choose Metrics… … or combinations thereof

• Accuracy? (% of examples correct)
• Coverage? (% of examples processed)
• Precision? (% of detections that are right)
• Recall? (% of objects detected)
• Amount of error? (For regression problems)

Metrics

• The system will try to “cheat” during learning:
 • If there is a short-cut to optimize the loss, the optimizer may well find it
 • Make sure a model with good results on your metric is a good model in production.
 • Ex.: Detection of a rare disease
What is required for this to be a success???

- High accuracy or low accuracy?
- Surgery robot: high accuracy
- Celebrity look-a-like app: low accuracy

Step 2: Build end-to-end system

End-to-end System

- Get up and running ASAP
- Build the simplest viable system first
- What baseline to start with though?
 - Copy state-of-the-art from related publication

Deep or Not?

- Lots of noise, little structure -> not deep
- Little noise, complex structure -> deep
- Good shallow baseline:
 - Use what you know
 - Logistic regression, SVM, boosted tree are all good
Entangled models

- If your model contains several “sub-models” (which is not always recommendable...):
 - Evaluate them separately if possible
 - Where does the system error come from?
 - Prioritize improvements based on cost/benefit

- If your model does not consist of sub-models, it can still be beneficial to pipe out intermediate results and do “QA” if at all reasonable.

Data Driven Refinement

- Understand your model and its strengths/weaknesses
 - Measure error on train and test sets
 - Overfitting vs underfitting
- Understand the learning process
 - Use Tensorboard and/or other visualizations
 - Know what to look for, and how to fix problems
- Choose a models with relevant learning bias
 - Don’t believe the hype
 - Feed Forward, CNN, RNN, more advanced tricks

Step 3: Data driven refinement

Variance - Bias tradeoff
Increasing Depth

Metric (almost) always improves with complexity for \textit{training};
Up to a point also for \textit{testing} (but think about overfitting, and look for vanishing gradient issues…)

Checking Data for Defects

Can a human process it?

Just as important, but more tedious to check:
Are there systematic errors? Are there trends in mistakes (e.g., always on brick wall or similar).
Hyper-parameters

Alternative 1: Think long and hard about the HPs, and their effect...

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Increases capacity when...</th>
<th>Reason</th>
<th>Caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hidden units</td>
<td>increased</td>
<td>Increasing the number of hidden units increases the representational capacity of the model.</td>
<td>Increasing the number of hidden units increases both the time and memory cost of essentially every operation on the model.</td>
</tr>
</tbody>
</table>

Table 11.1

Tuning the Learning Rate

- Too high lr: Can go astray
- Too low lr:
 - Computationally costly (more epochs to get a decent move)
 - Potentially stuck in local minima of the loss landscape
- Just right lr: Works just right!!!
- Either work very hard do tune the lr or use an lr scheduler (extremely simple with Keras: tf.keras.callbacks.LearningRateScheduler) ... or both!!

Figure 11.1

Hyper-parameters

Alternative 2: Automated search

Grid

Random

Figure 11.2

Practical Bayesian Optimization of Machine Learning Algorithms

Jasper Snoek
Department of Computer Science
University of Toronto
jasper@cs.toronto.edu

Hugo Larochelle
Department of Computer Science
University of Sherbrooke
hugo.larochelle@usherbrooke.edu

Ryan P. Adams
School of Engineering and Applied Sciences
Harvard University
rpa@seas.harvard.edu
Gaussian Processes

- A fancy way to make statistical distributions over curves.
- Assumes all possible points on the curve are jointly Gaussian, with a covariance between pairs depending on their distance in “input-space”.
- We can sample by (infinitely many times) generating “y-value” for some “x-value”, conditioned on previous samples.

Figure 1: Illustration of integrated expected improvement. (a) Three posterior samples are shown, each with different length scales, after the same five observations. (b) Three expected improvement acquisition functions, with the same data and hyperparameters. The maximum of each is shown. (c) The integrated expected improvement, with its maximum shown.

Already run experiments, with HP (x-axis) and Loss (y-axis) known

Figure 1: Illustration of integrated expected improvement. (a) Three posterior samples are shown, each with different length scales, after the same five observations. (b) Three expected improvement acquisition functions, with the same data and hyperparameters. The maximum of each is shown. (c) The integrated expected improvement, with its maximum shown.

One specific sample from posterior (i.e. given data)
Loss

Value of HP

One specific sample from posterior (i.e. given data)

Improvement as a func of HP (and “best guess”) if the red sample above is “correct”

(a) Posterior samples under varying hyperparameters

(b) Expected improvement under varying hyperparameters

(c) Integrated expected improvement

Figure 1: Illustration of integrated expected improvement. (a) Three posterior samples are shown, each with different length scales, after the same five observations. (b) Three expected improvement acquisition functions, with the same data and hyperparameters. The maximum of each is shown. (c) The integrated expected improvement, with its maximum shown.

Already run experiments, with HP (x-axis) and Loss (y-axis) known

High Test Error

• This is the high-variance case —> Overfitting
• Regularization is good here (e.g., Dropout, L1, L2, …)
• Standard trick: MORE DATA (or data augmentations)

Implementation in Keras tuner

Show code?

Note!
Data, data, data …

- Big dataset cannot be bad (if you have it, and time to use it):
- Will be able to learn whatever is to be learned
- Also: Less danger of overfitting

Results from Banko and Brill (2001)

Typical interpretations:
1. “It is not who has the best algorithm that wins. It’s who has the most data”
2. “Algorithms are overrated”

Self-supervision

- **Self-supervision:** Supervised learning where the training data is automatically labelled.
- Typically done with the expectation that the internal representations learned will be beneficial for a different (sparsely labelled) problem. —> Transfer-learning into the original problem domain.

Standard example: Filling in missing image patches.

Unsupervised Representation Learning by Predicting Image Rotations

Spyros Gidaris, Praveer Singh, Nikos Komodakis

Learning rotations

Does it work?

Table 1: Evaluation of unsupervised feature learning methods on CIFAR-10. The supervised ANN and the ConvNet+1 are conventional baseline models, whereas the other approaches have the form of an unsupervised model trained on the same data. All models are trained for 200 epochs. Accuracy is computed on the test set, which is not used during training. The best performance is indicated by a

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised ANN</td>
<td>39.80</td>
</tr>
<tr>
<td>Random Init</td>
<td>32.30</td>
</tr>
<tr>
<td>ConvNet</td>
<td>39.86</td>
</tr>
<tr>
<td>ConvNet (init.)</td>
<td>39.56</td>
</tr>
<tr>
<td>ConvNet (bias)</td>
<td>39.72</td>
</tr>
<tr>
<td>ConvNet (bias + init.)</td>
<td>39.77</td>
</tr>
<tr>
<td>Random + SPN (model + MAP)</td>
<td>40.3</td>
</tr>
<tr>
<td>Random + SPN (model + MAP)</td>
<td>40.4</td>
</tr>
<tr>
<td>Random + SPN (model + MAP)</td>
<td>40.7</td>
</tr>
</tbody>
</table>
Data Driven Refinement

- Understand your model
 - Measure error on train and test sets
 - Overfitting vs underfitting
- Understand the learning process
 - Use Tensorboard and/or other visualizations
 - Know what to look for, and how to fix problems
- Choose a models with relevant learning bias
 - Don’t believe the hype
 - Feed Forward, CNN, RNN, more advanced tricks

Visualization

- Plot all the usual stuff, like loss, accuracy, other metrics (train and validation sets); both actual value and deltas between epochs can be useful. Log-scale sometimes beneficial when plotting
- Per layer:
 - Scalars (Mean, SD) + histograms of: Weights, biases, activations, gradients
 - Track sparsity of: Outputs, Gradients (tf.nn.zero_fraction)
 - Spit out values of all “moving parts” (e.g., learning-rate), somewhere so it is easy to align with other per-epoch result

Example: Suboptimal learning in (too) deep FFNNs

- I found that layer activations from ReLUs were had:
 - Exhibiting problems with vanishing gradient
 - High fraction dead nodes
 - Some nodes potentially “overwhelming” the others in next layer
 - Behaviour changing considerably between epochs

- BatchNorm only partly solved it — still dead nodes
- LeakyReLU can also partly solve it, but vanishing gradients remains

Self-Normalizing Neural Networks

Günter Klambauer Thomas Unterthiner Andreas Mayr

Sepp Hochreiter
LIT AI Lab & Institute of Bioinformatics,
Johannes Kepler University Linz
A-4040 Linz, Austria
klambauer,unterthiner,mayr,hochreiter}@bioinf.jku.at
After lecture-comment:
I cut this a bit short. If you run the supplied selu.py, once with transfer RELU and once with SELU, you will see in Tensorboard that RELUs are very bad, have 40—50% neurons that do not give signal, and very small gradients in the initial layers. SELUs are self-regulating, and work well.

Example with SELU from Tensorboard?

$$\text{selu}(x) = \lambda \begin{cases}
 x & \text{if } x > 0 \\
 \alpha e^x - \alpha & \text{if } x \leq 0
\end{cases}$$

- $\alpha \sim 1.6732$
- $\lambda \sim 1.0507$

Data Driven Refinement

- Understand your model
- Measure error on train and test sets
- Overfitting vs underfitting
- Understand the learning process
 - Use Tensorboard and/or other visualizations
 - Know what to look for, and how to fix problems
- Choose a models with relevant learning bias
- Don’t believe the hype
- Feed Forward, CNN, RNN, more advanced tricks

Figure 1: The left panel and the right panel show the training error (y-axis) for feed-forward neural networks (FNNs) with batch normalization (BatchNorm) and self-normalizing networks (SNN) across update steps (x-axis) on the MNIST dataset the CIFAR10 dataset, respectively. We tested networks with 8, 16, and 32 layers and learning rate $1e^{-5}$. FNNs with batch normalization exhibit high variance due to perturbations. In contrast, SNNs do not suffer from high variance as they are more robust to perturbations and learn faster.
CNN, RNN, FFNN, ???

- CNNs are very good at data with localized correlation structure (e.g., neighbouring pixels in picture, or larger scale in hierarchy, i.e., \([\text{neighbours of \ldots}] \times N\) pixels)
- RNN useful for sequences in particular when we can think of the domain as “Markov-model-like”. CNNs also much used in sequence data (… or combos of both)
- FFNNs can be useful if there is no known structure to relate to; rarely state-of-the-art (e.g., Kaggle) unless a bit deep (>5 layers).

USE THE DATA TO SELECT YOUR MODEL, AND CHECK IF LEARNING BIAS AND INFORMATION FLOW FITS!!!

Sequence-to-Sequence

- Standard setup for, e.g., language translation
- For quite some time the “encode-decoder” setup with RNNs was the state-of-the-art.
- Now, moving towards attention-models…

Encoder - Decoder

Building blocks:
- Word embeddings
- Recurrent model
- Softmax to generate output

Encoder - Decoder

Building blocks:
- Word embeddings
- Recurrent model
- Softmax to generate output
Encoder - Decoder

Building blocks:
- Word embeddings
- Recurrent model
- Softmax to generate output

Does it work?

What's the problem

What's the problem
Plan:
• Input to s_t should be a weighted average of the values h_i.
• The weight for h_i at position t should depend on previous state s_{t-1}:
 $$c_i(t) = g(h_i, s_{t-1})$$
 for some function g.
• We will rescale $c_i(t)$ so that we have positive weights that sum to 1 using a softmax:
 $$w_i(t) = \frac{\exp(c_i(t))}{\sum \exp(c_i(t))}$$
• Simple choice for g is
 $$g(h_i, s_{t-1}) = h_i^T s_{t-1}$$

What goes on?
• Attention to vector h_i depends on vector s_{t-1}, “pointing in similar direction” as h_i.
• Random vectors are approximately orthogonal in high-dim.
• Typically only a few $c_i(t)$-values dominate
• This is further strengthened by softmax
• Attention works like a differentiable lookup-table that averages over a (sparse) set.

Attention Is All You Need
Multi-head attention

- The (single head) attention module typically picks out one or a few words as important
 - If more than one: Scaled average
- Sometimes several (sets of) words may be useful in “unrelated ways”:
 - One (set) gives the word to translate
 - Another the associated grammar
 - … etc
- Solution: Several sets of attention, concatenated

The full “Transformer” model

- No recurrence or convolutions
- Positional encoding + stacked substructures of attention and normalization
- Self-attention at encoder
- Masked self-attention and external attention at decoder
- Skip-connections to maintain gradients
- State of the art results in many (most) seq2seq problems

Summary

- Use needs to define metric-based goals
- Be sure that you get what you need
- Build an end-to-end system
 - Start simple, check what to improve — cost/benefit
- Data-driven refinement
 - Understand your model and its strengths/weaknesses.
 - Optimize hyper-parameters
 - Understand the learning process
 - Choose a models with relevant learning bias