JAX = AutoDiff + XLA

Keith L. Downing

November 29, 2023
JAX in (a few) Words

- JAX enables "autodiff": the differentiation of arbitrary python and numpy functions.
- This yields gradients for updating key parameters.
- Accelerated Linear Algebra (XLA) can speed up matrix operations without source-code changes.
- Typical application = backpropagation for neural networks, but it is not limited to that.
- It can differentiate across conditionals, iterations, complex data structures, etc.
- This supports many types of optimization, such as finding proper parameters for a PID controller or proper weights for the component terms of a heuristic in A* or Minimax search.
- Although JAX works well, run-time errors are common. It helps to understand a bit of what is happening behind the scenes. Hence, this lecture.
def any_func:
 arguments: a, b, c
 outputs: x, y, z

JAX.grad(any_func,…) allows the automatic calculation of:
- \(\frac{dx}{da} \)
- \(\frac{dy}{da} \)
- \(\frac{dz}{da} \)
- \(\frac{dx}{db} \)
... etc...

...all sorts of code...

Keith L. Downing
JAX = AutoDiff + XLA
So What? Why differentiate code?

Answer: To solve optimization problems where a, b, and c are user-controlled parameters and x, y, and z are variables to be optimized (e.g. minimized or maximized).

- Let \(\lambda \) = learning rate, and let \(q \in \{-1, 1\} \)
- IF goal = maximize output x, then \(q = 1 \). ELSE if goal = minimize x, then \(q = -1 \).
- After each run of any_func, update a, b and c as follows:
 - \(a \leftarrow a + q\lambda \frac{\partial x}{\partial a} \)
 - \(b \leftarrow b + q\lambda \frac{\partial x}{\partial b} \)
 - \(c \leftarrow c + q\lambda \frac{\partial x}{\partial c} \)

Typical minimization problem: supervised learning with neural nets – minimize output error by changing network weights.

Typical maximization problem: getting a simulated process to run for the longest amount of time without needing extra resources, or getting a process to produce the most product in a fixed number of timesteps.
import numpy as np
import jax
import jax.numpy as jnp

- These are standard imports.
- They will not be shown on every slide.
- "jax" may appear as "JAX" for readability and emphasis.

```python
def jaxf1(x, y):
    q = x**2 + 8
    z = q**3 + 5*x*y
    return z

def jaxf2(x, y):
    z = 1
    for i in range(int(y)):
        z *= (x+float(i))
    return z

def jaxf3(x, y):
    return x**y

# Default: argnums = 0
# Differentiate w.r.t. both 0th and 1st arguments
df3a = jax.grad(jaxf3, argnums=0)
df3b = jax.grad(jaxf3, argnums=1)
df3c = jax.grad(jaxf3, argnums=[0, 1])

# Create enhanced version of jaxf3 that, when called, will produce the derivative of x**y w.r.t. both x and y.
def jaxf4(x, y):
    q = x**2 + 5
    r = q*y + x
    return q*r
```

```python
>>> df1 = jax.grad(jaxf1)
>>> df1(3.0, 4.0)  # => 5222
Notation: this will be written as [496] in these slides, to avoid clutter.

>>> df2 = jax.grad(jaxf2)
>>> df2(2.0, 3)  # => [26.0]

y = 3 => jaxf2 computes z = x(x+1)(x+2) = x**3 + 3x**2 + 2x
Hence, dz / dx = 3x**2 + 6x + 2
=> dz / dx @(x=2) = 26

>>> jax.grad(jaxf3, argnums=[0, 1])(3.0, 2.0)  # => [6.0, 9.88751]

Create enhanced version of jaxf3
that, when called, will produce the derivative of x**y w.r.t. both x and y.
Create and execute
```
def jumpinjax(x, n, switch, primes=[2, 3, 5, 7, 11]):
 if switch == 0:
 for i in range(int(n)):
 x = x**2
 elif switch == 1:
 for p in primes:
 x = x*p
 else:
 return -x
 return x
djuja = jax.grad(jumpinjax) # Build gradient scaffolding

>>> jumpinjax(3, 3, 0) => 6561
>>> jumpinjax(3, 3, 1) => 6930
>>> jumpinjax(3, 10, 2) => -3

>>> djuja(3.0, 3, 0) => [17496.0] # 8*(3)**7 = 17496 = d(x**8)/dx @ x=3
>>> djuja(3.0, 3, 1) => [2310.0] # 2*3*5*7*11 = 2310 = d(x*2*3*5*7*11)/dx @ x=3
>>> djuja(3.0, 10, 2) => [-1.0] # d(-x / dx) = -1

def jumpinjax2(x, n, switch, primes=[2, 3, 5, 7, 11]):
 n = int(n) # JAX tracing requires reals, but
 switch = int(switch)
 if switch == 0:
 return ranger(x, n)
 elif switch == 1:
 return primer(x, primes)
 else:
 return -x
 return x
def ranger(y, m):
 for _ in range(int(m)):
 y = y**2
 return y
def primer(x, primes):
 for p in primes:
 x *= p
 return x
djuja2 = jax.grad(jumpinjax2)

Nested function calls are no problem: jumpinjax2 and djuja2 give the same results as jumpinjax and djuja, respectively.

Keith L. Downing JAX = AutoDiff + XLA
def jumpinjax3(x, n, switch):
 if switch == 0:
 return ranger(x, n)
 elif switch == 1:
 return jnp.array([x**i for i in range(n)])
 else:
 return -x

djuja3 = jax.jacrev(jumpinjax3)

>>> jumpinjax3(3,3,0) => 6561
>>> jumpinjax3(3,3,1) => [1, 3, 9]
>>> jumpinjax3(3,3,2) => -3

>>> djuja3(3.0,3,0)
 => [17496.0] # [d(x**8) / dx] @ x = 3.0

>>> djuja3(3.0,3,1)
 => [0., 1.0, 6.0] # [d(x**0) / dx , dx/dx, d(x**2) / dx] @ x = 3.0

>>> djuja3(3.0,3,2)
 => [-1.0] # [d(-x) / dx] @ x = 3.0

Output = an array of values. JAX needs to take the derivative of EACH value.
This also requires JNP.array instead of NUMPY.array.
Reverse-Mode Autodifferentiation

AutoDiff = Fwd Pass then Bkwd Pass on a Computation Graph

\[f(x,y) = 3x^2y + 8x + 11 \]

\[f(2,5) = 3(2)^2(5) + 8(2) + 11 = 87 \]

Keith L. Downing

JAX = AutoDiff + XLA
Basic Calculus for the Backward Pass: Chain Rule

Goal: Compute \(\frac{df}{dx} \)

Start at the root and work down to the leaves.

- **Use parent value to compute child value**

- **This depends upon \(f \).**
 - IF \(f = g\cdot h \), then \(\frac{df}{dg} = h \),
 - ELSEIF \(f = g + h \), then \(\frac{df}{dg} = 1 \)
 - ELSEIF \(f = \max(g;h) \), then:
 - \(\frac{df}{dg} = 1 \) if \(g > h \) else 0
 - etc....

- **Note:** The values of \(g \) and \(h \) will have been computed on the forward pass, from leaves to root.

- **This depends upon \(g \).**
 - IF \(g = \sin(h) \), then \(\frac{dg}{dh} = \cos(h) \),
 - ELSEIF \(g = e^h \), then \(\frac{dg}{dh} = e^h \cdot h \)
 - ELSEIF \(g = \ln(h) \) then \(\frac{dg}{dh} = \frac{1}{h} \)
 - etc....

- \(f(g(h(x))) \)

- \(\frac{df}{df} = 1 \)

- \(\frac{df}{dg} = \frac{df}{df} \cdot \frac{df}{dg} \)

- \(\frac{df}{dh} = \frac{df}{dg} \cdot \frac{dg}{dh} \)

- \(\frac{df}{dx} = \ldots \)

- JAX = AutoDiff + XLA
Reverse-Mode Autodifferentiation: Backward Pass

The diagram illustrates the computation direction from root to leaves. For any node z:

- **value(z)** = fwd pass value (orange)
- **value(df/dz)** = bkwd pass value (yellow box)

The function $f(x, y) = 3x^2y + 8x + 11$ and its value at $(2, 5)$ is calculated as follows:

$f(2, 5) = 3(2)^2(5) + 8(2) + 11 = 87$

The derivatives are computed using the chain rule and backpropagation. For example:

$\frac{df}{dx} = df/dr + df/ds + df/dn$

$\frac{df}{dy} = df/dq$

Final Answers:

$\frac{df}{dx} = 68$

$\frac{df}{dy} = 12$
def foo(x,y):
 q = x**2 + 5
 r = q*y + x
 return q*r

jax.grad(foo)

* Use JAX.jacrev, not JAX.grad if the traced function (foo) has several outputs.
bad_news = 1.0
def gum(x, y):
 global bad_news
 bad_news += 10
 return bad_news * x * y ** 2
dgum = jax.grad(gum, argnums=[0, 1])
dgum2 = jax.jit(dgum) # compiled version

> gum(2.0, 3.0)
 198.0 # bad_news = 11
> gum(2.0, 3.0)
 378.0 # bad_news = 21

> dgum(2.0, 3.0)
 [[99.0], [132.0]] # bad_news = 11
> dgum(2.0, 3.0)
 [[189.0], [252.0]] # bad_news = 21

> dgum2(2.0, 3.0)
 [[99.0], [132.0]] # bad_news = 1
> dgum2(2.0, 3.0)
 [[99.0], [132.0]] # bad_news = 1

Bottom Line: Only use JAX.grad on “pure functions” = those without global side-effects.

* Uncompiled version handles updated global in gum.
* Compiled version ignores all side-effects to globals.

Keith L. Downing

JAX = AutoDiff + XLA
def hum(x, y, good_news):
 good_news += 10
 return good_news * x * y**2, good_news

dhum = jax.jacrev(hum, argnums=[0, 1])
dhum2 = jax.jit(dhum) # compiled version

> d_hum / d_x = [good_news * y**2, 0.0]
> d_hum / d_y = [2 * good_news * x * y, 0.0]

Use JAX.jacrev instead of JAX.grad, since hum produces TWO outputs.

No need to restart Python.

Any “state” variable to be side-effected should either be a function argument or stored within an argument's data structure, e.g. a pytree.

Identical behavior...as it should be...

* Uncompiled version

* Compiled version

Keith L. Downing

JAX = AutoDiff + XLA
The Loss function

def loss_func(params, feature_vectors, targets):
 predictions = model(params, feature_vectors)
 return jnp.mean((predictions - targets)**2)

Running a minibatch of n cases through the model, yielding n predictions

def model(params, cases):
 return jnp.array([jnp.dot(params[0 : -1], case) + params[-1] for case in cases])

The Loss function

def loss_func(params, feature_vectors, targets):
 predictions = model(params, feature_vectors)
 return jnp.mean((predictions - targets)**2)

Apply gradient function to the cases and then update the parameters.

def update(loss_gradient, params, feature_vectors, targets, learning_rate):
 return params - learning_rate * loss_gradient(params, feature_vectors, targets)

** Main **

def regress(steps, params, feature_vectors, targets, learning_rate):
 loss_gradient = jax.grad(loss_func) # Creates gradient function
 for _ in range(steps):
 params = update(loss_gradient, params, feature_vectors, targets, learning_rate)

Goal: Minimize Loss
Process: Update params based on the derivative of loss w.r.t. params

Features
Weights
Target
Prediction
Bias

Loss

Update
Weights & Bias

Goals: Minimize Loss
Process: Update params based on the derivative of loss w.r.t. params
Gradients can be calculated across many called functions (F).

JAX builds scaffolding for computing derivatives in all $f \in F$.

When you see $d\text{foo} = \text{JAX}.\text{grad}(\text{foo})$ or $d\text{foo} = \text{JAX}.\text{jacrev}(\text{foo})$ for any function (foo), then foo and all funcs in its call tree are traced.

These traced functions may require JAX versions of typical numpy functions such as np.array (jnp.array) and np.dot (jnp.dot).

Avoid side-effects in all these traced functions!
import numpy as np
import jax
import jax.numpy as jnp

def gen_jaxnet_params(layers=[5,10,5]):
 sender = layers[0]; params = []
 for receiver in layers[1:]:
 weights = np.random.uniform(-.1, .1, (sender, receiver))
 biases = np.random.uniform(-.1, .1, (1, receiver))
 sender = receiver
 params.append([weights, biases])
 return params

def predict(all_params, features):
 def sigmoid(x): return 1 / (1 + jnp.exp(-x))
 activations = features
 for weights, biases in all_params:
 activations = sigmoid(jnp.dot(activations, weights) + biases)
 return activations

Make a batched version of the `predict` function.
None => all params used on each call,
0 => take one row at a time of the cases. vmap = vector map
batched_predict = jax.vmap(predict, in_axes=(None, 0))

import numpy as np
import jax
import jax.numpy as jnp

numlayers = len(layers) - 1
X = np.random.uniform(-.1, .1, (100, layers[0]))
Y = np.random.uniform(-.1, .1, (100, 1))

params = gen_jaxnet_params(layers)
activations = batched_predict(params, X)
predictions = batched_predict(params, X)

X, Y, predictions, activations, params

def jaxnet_loss(params, features, targets):
 predictions = batched_predict(params, features)
 return jnp.mean(jnp.square(targets - predictions))

print(jaxnet_loss(params, X, Y))
def jaxnet_train_one_epoch(params, features, targets, lrate=0.1):
 mse, gradients = jax.value_and_grad(jaxnet_loss)(params, features, targets)
 return [(w - lrate * dw, b - lrate * db) for (w, b), (dw, db) in zip(params, gradients)], mse

def jaxnet_train(params, features, targets, epochs, lrate=0.1):
 curr_params = params
 for _ in range(epochs):
 curr_params, mse = jaxnet_train_one_epoch(curr_params, features, targets, lrate)
 return curr_params

def jaxrun(epochs, ncases, layer_sizes, lrate=0.03):
 features, targets = generate_data_cases(ncases)
 params = gen_jaxnet_params(layer_sizes)
 jaxnet_train(params, features, targets, epochs, lrate)

JAX.value_and_grad is similar to JAX.grad, but it returns the value of jaxnet_loss along with the gradients.

Functions traced by JAX need to replace some numpy functions with the corresponding JAX.numpy functions.
PID Controller

\[p = \text{proportional}; \ i = \text{Integral}; \ d = \text{Derivative} \]

The controller needs error history to compute the error's derivative and integral (sum).

The plant can be a complex system (or mathematical model of one), and these typically have state variables that affect the mapping from inputs to outputs.

\[U = k_p E + k_d \frac{dE}{dt} + k_i \sum E \]
The values of the three PID parameters: k_p, k_d and k_i, will vary with the control problem, i.e. the plant to be controlled.

Tuning them for a particular plant can be time-consuming.

Can we use gradient descent to do the job?

JAX can be very helpful, since it permits tracing of the plant and controller across many timesteps (T) of operation.

This allows us to compute $\frac{\partial (\sum E)}{\partial k_p}$, $\frac{\partial (\sum E)}{\partial k_d}$ and $\frac{\partial (\sum E)}{\partial k_i}$ or some other useful derivatives, such as $\frac{\partial E_T}{\partial k_p}$, $\frac{\partial E_T}{\partial k_d}$ and $\frac{\partial E_T}{\partial k_i}$.

Use these derivatives to update parameters (where $\lambda =$ learning rate):

$$k_p = k_p - \lambda \frac{\partial (\sum E)}{\partial k_p}$$

$$k_d = k_d - \lambda \frac{\partial (\sum E)}{\partial k_d}$$

$$k_i = k_i - \lambda \frac{\partial (\sum E)}{\partial k_i}$$

After updating k's, reset the plant’s state (and controller’s error history) and run the coupled plant-controller for another T timesteps.

Repeat for M epochs.
Some Code for Adaptive PID Control

```python
def run_one_epoch(params, state):
    .. state gets updated at each timestep
    :
    return avg_of_all_timestep_errors
```

```python
def run_system(num_epochs):
    gradfunc = jax.value_and_grad(run_one_epoch, argnums=0)
    .. init params and state
    for _ in range(num_epochs):
        avg_error, gradients = gradfunc(params, state)
        .. execute run_one_epoch via gradfunc
        update_params(params, gradients)  # Use gradients to update controller params
```

Each gradient is the derivative of the average error (i.e. the output of run_one_epoch) w.r.t. one of the controller parameters (k_p, k_d or k_i).

```python
gradfunc = jax.value_and_grad(run_one_epoch, argnums=0)
```

Create a traced version of run_one_epoch called gradfunc.

When called with the normal arguments to run_one_epoch, this will return both:
- a: the normal result (R) of the call to run_one_epoch, and
- b: the gradients of R with respect to all values in the 0th argument to run_one_epoch, i.e. params
The neural net learns an effective mapping from the 3 error terms to the control output (U). The 3 k parameters are no longer needed; they are replaced by the net's weights and biases.