The Akamai Network

A Platform for High-Performance Internet Applications

Edvard Bakken
Akamai - introduction

- 61 000 servers across 70 countries
- Current internet architecture does not meet current needs
 - Many bottlenecks
- Akamai built a CDN to overcome this
 - Handled 15-20% of internet traffic in 2010
Poor service has consequences

● Reduced performance impacts business
 ○ One hour of outage - $2.8 million in lost sales (2009)
 ○ What about today?

● Reputation is a factor

● 40% of users will find a new service if loading exceeds 3 seconds
Internet does not meet these requirements

- Best-effort, no guarantees
- Latency, packet loss, outages, inefficient protocols
- Online video needs even more
Bottlenecks on the internet

- Internet is many networks that are connected
 - Largest network only handles about 5% of total traffic
 - Content visits multiple networks to reach end users

- Peering point congestion
- Inefficient routing
- Unreliable networks
- Inefficient communication
- Scalability
- Application limitations and slow rate of change adoption
Content Delivery Network

- Brings static content closer to end users
- Avoids bottlenecks
- Provides management tools, logging etc.
- Virtual network as software layer over the Internet
- Enhanced scalability, security, reliability and performance

Figure 2: A delivery network is a virtual network built as a software layer over the Internet that is deployed on widely distributed hardware.
Figure 3: System components of a delivery network. To understand how these components interact, it is instructive to walk through a simple example of a user attempting to download a web page through the Akamai network.
System design principles

- **Reliability**
 - Expect failures
 - Ensure redundancy

- **Scalability**
 - Handle increasing traffic
 - Handle increasing amounts of data

- **Limit need for human management**
 - Operate in spite of failures
 - Self-tune

- **Performance**
 - Improve end user experience, cache hit rates etc.
 - Reduce energy usage
Performance and scalability

- Location, location, location
 - As close to the user as possible
- Many smaller clusters
- Increases availability
- Increases throughput
Transport system

- Moves content from origin to edge server
- Tiered distribution
 - Parent clusters act as intermediary caches
 - Reduces requests to origin by more than 90%
- Overlay network for live streaming
 - Spread content to entry points
 - Publish/subscribe between entry points and edge servers
 - Reflectors help make transfers more efficient
Application delivery networks

- Improves performance of dynamic applications
- Transport system can be used to avoid bottlenecks
- Logic can be moved to edge servers
Transport system for applications

- Communication between any two Akamai servers can avoid all bottlenecks
- Helps both upload and download, relies on the large amount of smaller clusters around the world.
- Path optimization
 - Use data from Akamai mapping system to chart a path to origin
- Packet loss reduction
 - Use paths found previously for redundancy
- Transport protocol optimizations
 - Proprietary protocols allow for more aggressive tuning, due to more reliable network
- Application optimizations
 - Prefetch or compress content
Hosting applications at the edge

- Akamai provides cloud computing close to the users
 - Several technical challenges
 - Difficult for apps that rely heavily on transactional databases
- Many useful use cases
 - Content aggregation
 - Static databases
 - Data collection and forms
 - Front end at the edge
Figure 5: System components of the Akamai platform.
Edge server platform

- Handles requests from users
- Many tweaks and features
 - Cache control
 - Cache indexing
 - Access control
 - Response to origin server failure
 - Header alteration
 - EdgeComputing
 - Performance optimization
Mapping system

- Directs traffic
- Scoring
 - Capture connectivity across the internet
- Real-time mapping
 - Use scoring to create actual maps
 - Assigns end users to edge servers
 - Map to cluster
 - Map to server
 - Assigns parent clusters and intermediaries
Communications and Control system

- Handles communication between Akamai machines
- Dynamic config or software updates and management
Data collection and analysis

- Over 100TB of logs per day
- Monitoring
- Analytics
- Billing
Additional systems

- DNS
- Monitoring agents
- Global traffic manager
- Storage
- Client side delivery
- Management portal
Section 8 & 9

- Examples and customer cases
- They seem to provide great results