VDB

High-Resolution Sparse Volumes with Dynamic Topology
Outline

● Goal
● Data structure
● Applications
● Results
Goal

- Efficient storage of voxel data
 - Sparse data
 - Level set
- Efficient access
 - Random
 - Sequential
 - Stencil
- Store dynamic data in a dynamic structure
Characteristics according to paper

- Dynamic
- Memory efficient
- General topology
- Fast random and sequential data access
- Virtually infinite
- Efficient hierarchical algorithms
- Adaptive resolution
- Simple
- Configurable
- Out-of-core
Data Structure

- Hierarchy
 - Fixed height
 - Similar to bounding boxes

- Compression
 - Sparse data
 - Bit codes for active tiles

- Configurations
 - Height
 - Branching factor
 - Node size
Data Structure

- Root node (unbounded)
- Internal Node 1
 - Tile values with active/inactive states
 - Active Mask
 - Child Mask
 - Tile values / Child pointers
- Internal Node 2
- Leaf Node
 - Active Mask
 - Voxels
Nodes

- **Root**
 - Sparse, resizable
 - Represented as hash map

- **Other nodes**
 - Dense, restricted to powers of two in size
 - Direct access table

- **Any node**
 - May contain pointers to values instead of pointer to node
 - Used when all tiles in an internal node have the same (or no) value.
Bit Masks

- Direct access bit masks
 - Embedded in the tree structure
 - Used for
 - Encoding topology
 - Sequential iterators
 - Lossless compression
 - Boolean operations
 - Morphology operations
2D Structure

Only stores active tiles. Values stored at the highest possible level.
Data access

- Constant time access
 - Random
 - Constant height
 - Inverted tree traversal ("caching")
 - Sequential
 - Iterators
 - Stencil
 - Combination of the above
Application algorithms

- Topological Morphology Operations
 - Dilation and erosion using the bit masks
- Level set applications
 - Constructive Solid Geometry
 - Boolean Topology Operations
 - Mesh to Level Set conversion
 - Flood-filling
Results

- Mainly confirming that the data structure performs better than alternatives in most cases, while offering the desired features.
- Trades a slightly larger memory usage for additional flexibility compared to DT-grid.
- Has been successfully applied by DreamWorks Animation in film production.