Analyzing and Reducing the Damage of Dataset Bias to Face Recognition with Synthetic Data

Adam Kortylewski Thomas Gerig By Bernhard Egger Andreas Morel-Forster

Andreas Schneider Thomas Vetter

Department of Mathematics and Computer Science

University of Basel

Presented by Ola Lium

Table of content

- 1. Motivation
- 2. VGG16 and AlexNet
- 3. Synthetic data generation
- 4. Test setup
- 5. Analysing damage of dataset bias
- 6. Disentanglement bias
- 7. Using synthetic data to reduce bias
- 8. Results

Motivation

- Facial recognition
- Deep learning suffers dataset bias
- Large size of datasets
- Analyzing dataset bias

VGGNet(16) 2014 and AlexNet 2012

- AlexNet DCNN
- VGGNet DCNN
- ~62 million vs ~152 million params

Synthetic data generation

- Face image generator
- 3D Morphable Model
- Basel Face Model 2017
- 2D images from 3D model
- Random parameters
- Infinite faces

Test setup

Damage of biased dataset

- Range of yaw
- Both DCNN struggle with unseen poses
- Confirms assumptions about DCNNs

Damage of biased dataset

- Sparse sampling of yaw pose
- VGG16 better
- All correct between -45 and 45
- Both struggle outside range

Disentanglement bias

Can DCNNs disentangle face pose from facial identity?

(b)

Using synthetic data to reduce bias

- FaceNet NN4
- Fine-tune biased datasets
- 20K identities, 100 images per
- Random image generation
- Performance increase
- Reduce real-world data
- Better generalization

Face Recognition			
Datasets	Multi-PIE	LFW	IJB-A
Metric	Accuracy	Accuracy	TAR
SYN-only	88.9	80.1	62.5
Real-100%	91.2	94.1	86.8
+ Primed	93.3	95.8	90.6
Real-25%	83.6	89.1	71.3
+ Primed	91.3	93.6	85.0
Real-10%	81.7	85.1	66.2
+ Primed	91.3	91.8	83.4

Results

- Deeper is better to find unseen yaw poses
- DCNNs are biased to dataset
- DCNNs suffer disentanglement bias
- With proposed method you can see this bias
- Proposed method reduces need for real world data