Cross-time registration of 3D point clouds

3D registration for cultural heritage restoration, preservation and monitoring.
Motivation and contribution
Problems identified

- Large timescale of cultural heritage applications
- No existing method specific for cross-time registration
- No existing benchmark specific for cross-time registration

Example of ground truth vs 3D registration using traditional optimization approach
Paper contributions

- Formal problem definition and framework proposal.
- Novel down-sampling method.
- Fulfilling a need of adequate benchmarking.
- Evaluation of state-of-the-art methods on performance.
Proposed methods
Cross-time registration pipeline

- Down sample
- Model segmentation
- Feature extraction
- Fine alignment
Eroded Cultural Heritage Objects dataset
Implementation
Cross-time reg pipeline

Curvature down sampling (CDS)

Find principled curvature

Down-sample by retaining $S = 1024$ points with the least curvature.

Illustration of surface deformation\(^1\).

Illustration of principled curvature on saddle surface\(^2\).

\(^1\) SIMULATING EROSION ON CULTURAL HERITAGE MONUMENTS
\(^2\) PRINCIPAL CURVATURE, WIKIPEDIA
Rigorously rotation invariant feature extraction block (RRI)

RRI definition:

Where $\mathcal{F}: \mathbb{R}^{N \times 3} \rightarrow \mathbb{R}^{N \times D}$ such that

$$\mathcal{F}(S) = \mathcal{F}(R(S))$$

Holds for all point set $S \in \mathbb{R}^{N \times 3}$ and rotation mapping $R \in SO(3)$.

4 features: distance, angle, sine and cosine.

Simple example of RRI transforms
Cross-time reg pipeline

Siamese architecture of KPConv network

Segments the point cloud

Inspired by convolution on images
 - Kernel pixels - Kernel points
 - Weighted connections – weighted points
 - Segmented image – segmented cloud

Point-to-component correspondence

KPConv on 2D points for a simpler illustration\(^1\).

\(^1\) KPConv: Flexible and Deformable Convolution for Point Clouds
Siamese architecture of KPConv network

Controlled by regularization
Further improves improvements for CrossTimeReg

Deformable KPConv illustrated on 2D points\(^1\).
Deep gaussian mixture regression model (DeepGMR)

Equivalent with DeepGMR

From association matrix to GMM parameters

Minimize KP-divergence

Aligns component centroids
Cross-time reg pipeline

Loss function

Directed Hausdorff Distance

Suitable for erosion

Minimizes:

\[L = \sqrt{D_H + D_{MH}} \]

Backpropagated to KPConv

Where

\[D_H : \text{maximum of the directed Hausdorff distances } D_h. \]

\[D_{MH} : \text{average directed Harsdorf distance} \]

\[D_h = \max_i \left(\min_j (p_i - \hat{p}_j) \right) \]
ECHO dataset creation

Sourced 3D models

- Chancay
- Lurin
- Maranga
- Nazca
- Pando
- Supe
- Jar
- Pitcher
- Bowl
- Figurine
- Basin
- Pot
- Plate
- Vase
ECHO dataset creation

Dataset augmentation

Rigid transformations
 - Unrestricted random rotation
 - Restricted random translation
Surface degradation

Simplified weather model

Simulated by diffusion equation:

\[\hat{P} = P + \delta n dt, \]

Where \(n \) and \(\delta \) consist of all normal vectors and surface alteration respectively of each corresponding point in \(P \).

\(\delta_i > 0 \Rightarrow \) surface deposition

\(\delta < 0 \Rightarrow \) surface recession
Performance evaluation
Metrics

Error (R) – Absolute rotation difference (LB)
Error (t) – Absolute translation difference (LB)
RMSE – Error from prediction vs target transform (LB)
RMSD – Surface similarities between GT and pred (LB)
Recall (%) – portion of tests with RMSE above 0.2 (HB)
Synthetic data without erosion

<table>
<thead>
<tr>
<th>Method</th>
<th>Error(R)</th>
<th>Error(t)</th>
<th>RMSE</th>
<th>Recall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP [19]</td>
<td>1.6453</td>
<td>40.3423</td>
<td>30.0234</td>
<td>0</td>
</tr>
<tr>
<td>FPFH-RANSAC [21], [27]</td>
<td>1.8315</td>
<td>29.2325</td>
<td>29.4201</td>
<td>0.07</td>
</tr>
<tr>
<td>Si-FGR [22], [28]</td>
<td>1.7274</td>
<td>0.0247</td>
<td>1.0814</td>
<td>92.52</td>
</tr>
<tr>
<td>SISI-RANSAC [21], [30]</td>
<td>1.2945</td>
<td>0.2363</td>
<td>0.8774</td>
<td>85.89</td>
</tr>
<tr>
<td>LD-SIFT-RANSAC [21], [30]</td>
<td>0.7021</td>
<td>0.1661</td>
<td>0.5102</td>
<td>99.01</td>
</tr>
<tr>
<td>RICI-FGR [22], [29]</td>
<td>1.7392</td>
<td>0.0272</td>
<td>1.0814</td>
<td>93.73</td>
</tr>
<tr>
<td>Deep Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRNet [48]</td>
<td>1.7368</td>
<td>0.9868</td>
<td>1.4728</td>
<td>49.35</td>
</tr>
<tr>
<td>PointNetLK [39]</td>
<td>1.7346</td>
<td>29.2016</td>
<td>29.2192</td>
<td>0</td>
</tr>
<tr>
<td>PCRNNet [41]</td>
<td>1.8054</td>
<td>49.4641</td>
<td>49.4701</td>
<td>0</td>
</tr>
<tr>
<td>RPM-Net [43]</td>
<td>1.6779</td>
<td>29.1860</td>
<td>29.2018</td>
<td>0</td>
</tr>
<tr>
<td>DCP [42]</td>
<td>1.7219</td>
<td>39.7070</td>
<td>39.7200</td>
<td>0</td>
</tr>
<tr>
<td>DeepGMR [45]</td>
<td>0.9578</td>
<td>1.9203</td>
<td>0.5192</td>
<td>98.34</td>
</tr>
<tr>
<td>CrossTimeReg</td>
<td>0.9456</td>
<td>1.0821</td>
<td>0.6751</td>
<td>99.43</td>
</tr>
<tr>
<td>Method</td>
<td>Registration</td>
<td>Error(R)</td>
<td>Error(t)</td>
<td>RMSE</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Geometry-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP [19]</td>
<td>✓</td>
<td>1.6992</td>
<td>42.5667</td>
<td>38.6065</td>
</tr>
<tr>
<td>FPFH-RANSAC [21], [27]</td>
<td>✓</td>
<td>1.8314</td>
<td>29.2151</td>
<td>29.3316</td>
</tr>
<tr>
<td>SI-FGR [22], [28]</td>
<td>✓</td>
<td>1.8202</td>
<td>0.0629</td>
<td>1.1298</td>
</tr>
<tr>
<td>SISI-RANSAC [21], [30]</td>
<td>✓</td>
<td>0.9984</td>
<td>0.1044</td>
<td>0.6870</td>
</tr>
<tr>
<td>LD-SIFT-RANSAC [21], [30]</td>
<td>✓</td>
<td>0.3496</td>
<td>0.0793</td>
<td>0.2789</td>
</tr>
<tr>
<td>RICI-FGR [22], [29]</td>
<td>✓</td>
<td>1.1396</td>
<td>0.0495</td>
<td>1.1832</td>
</tr>
<tr>
<td>Deep Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRNet [48]</td>
<td>✓</td>
<td>1.7514</td>
<td>1.0184</td>
<td>1.4723</td>
</tr>
<tr>
<td>PointNetLK [39]</td>
<td>✓</td>
<td>1.7413</td>
<td>29.2389</td>
<td>29.2514</td>
</tr>
<tr>
<td>PCRNet [41]</td>
<td>✓</td>
<td>1.8095</td>
<td>49.3442</td>
<td>49.3603</td>
</tr>
<tr>
<td>RPM-Net [43]</td>
<td>✓</td>
<td>1.6993</td>
<td>29.2594</td>
<td>29.2784</td>
</tr>
<tr>
<td>DCP [42]</td>
<td>✓</td>
<td>1.6881</td>
<td>38.6109</td>
<td>38.6542</td>
</tr>
<tr>
<td>DeepGMR [45]</td>
<td>✓</td>
<td>1.0065</td>
<td>0.0673</td>
<td>0.9454</td>
</tr>
<tr>
<td>CrossTimeReg</td>
<td>✓</td>
<td>0.9942</td>
<td>0.0448</td>
<td>0.6764</td>
</tr>
<tr>
<td>CrossTimeReg (trained on ECHO)</td>
<td>✓</td>
<td>0.1397</td>
<td>0.0714</td>
<td>0.2606</td>
</tr>
</tbody>
</table>
Erosion over time
Efficiency
Qualitative assessment
Conclusion
Achievements

Computationally efficient and stable method for Cross-time reg
Outperforming state of the art methods on cross-time reg
Publicly available dataset for further experimentation
Future work

Optimalisation of subsampling step
Framework integration
Mesh folding not addressed
Non-uniform, more realistic erosion model
Sources

Videos by The Instagrapher/Adrien JACTA – Pexels.com

