
Research Policy 32 (2003) 1149–1157

Editorial

Special issue on open source
software development

Georg von Krogha,∗, Eric von Hippelb,1

a Institute of Management, University of St. Gallen, Dufourstrasse 48, St. Gallen CH-9010, Switzerland
b Sloan School of Management, MIT, 50 Memorial Drive, Cambridge, MA 02139, USA

Abstract

This special issue of Research Policy is dedicated to new research on the phenomenon of open source software devel-
opment. Open Source, because of its novel modes of operation and robust functioning in the marketplace, poses novel
and fundamental questions for researchers in many fields, ranging from the economics of innovation to the principles
by which productive work can best be organized. In this introduction to the special issue, we provide a general his-
tory and description of open source software and open source software development processes, plus an overview of the
articles.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Open source software development; Editorial

1. Introduction

Open source software development projects are gen-
erally Internet-based networks or communities of soft-
ware developers. The software they develop is made
freely available to all that adhere to the licensing terms
specified by the open source project. Open source soft-
ware projects and development processes have spread
rapidly and widely, and many thousands exist today.
The number of developers participating in each project
ranges from a few to many thousands, and the number
of users of the software produced by open source soft-
ware development projects range from few to many
millions. Well-known examples of open source soft-

∗ Corresponding author. Tel.:+41-71-224-23-63;
fax: +41-71-224-23-55.
E-mail addresses:georg.vonkrogh@unisg.ch (G. von Krogh),
evhippel@mit.edu (E. von Hippel).

1 Tel.: +1-617-253-7155; fax:+1-617-253-2660.

ware having many users are the GNU/Linux computer
operating system, Apache server software and the Perl
programming language.

The phenomenon of open source software is of
great scholarly interest to many. Its robust function-
ing in the marketplace together with its novel modes
of operation pose major and exciting new questions
regarding fundamental matters ranging from the eco-
nomics of innovation to the principles by which pro-
ductive work can best be organized. In recognition
of the interest and importance of this topic,Research
Policyoffers this special issue as a forum for some ex-
citing new work and voices on open source software.
In this brief introduction to the special issue, we first
provide a quick overview of the history and function-
ing of open source and free software. Next we link
each of the papers published in this special issue to a
general topology of questions of interest to many in
this field.

0048-7333/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0048-7333(03)00054-4

1150 G. von Krogh, E. von Hippel / Research Policy 32 (2003) 1149–1157

2. Open source software: history and
characteristics2

A good way to get a first grasp of open source
software is to observe how, throughout its history, it
has differed from commercial software. Today, in the
software industry, firms and individuals appropriate
and secure financial rewards from their “packaged”
software products by two principle means. First, the
software industry uses licensing arrangements based
on copyright law. A software license provides indi-
viduals and groups with the legal rights to use a piece
of software often in return for a licensing fee (e.g.
Dam, 1995; Granstrand, 1999). In current commercial
practice, most software is licensed rather than sold to
a third party as intellectual property. A software li-
cense typically restricts the numbers of computers the
software can run on, the number of software users,
backups, and the simultaneous use of backups.

Second, many commercial software firms protect
the software’s “source code”, which is a sequence of
instructions to be executed by a computer to accom-
plish a program’s purpose. Programmers write com-
puter software in the form of source code, and also
“document” that source code with brief written expla-
nations of the purpose and design of each section of
their program. To convert a program into a form that
can actually operate a computer, source code is trans-
lated into machine code using a software tool called
a compiler. The compiling process removes program
documentation and creates a “binary” version of the
program—a sequence of computer instructions con-
sisting only of strings of ones and zeros. Binary code
is very difficult for programmers to read and interpret.
Therefore, programmers or firms that wish to prevent
others from understanding and modifying their code
will release only binary versions of the software. In
contrast, programmers or firms that wish to enable
others to understand and update and modify their soft-
ware will provide them with its source code (Moerke,
2000; Simon, 1996).

In the early days of computer programming such
commercial, protected, and “packaged” software was

2 In this section, we draw upon three excellent histories of the
open source software movement: “The Cathedral and the Bazaar”
written by Raymond (1999), “Hackers” written byLevy (1984),
and a more recent account “Rebel Code” written byMoody (2001).

a rarity—if you wanted a particular program for a
particular purpose you typically wrote the code your-
self or hired it done. Much of the software devel-
opment in the 1960s and 1970s was carried out in
academic and corporate laboratories by scientists and
engineers. These individuals found it a normal part
of their research culture to freely give and exchange
software they had written, to modify and build upon
each other’s software both individually and collabo-
ratively, and to freely give out their modifications in
turn. This communal behavior became a central feature
of “hacker culture.” (In communities of open source
programmers, “hacker” is a very positive term that is
applied to very talented and dedicated programmers.3)

In 1969 the US Defense Advanced Research Project
Agency (DARPA) established the ARPANET, the first
transcontinental, high-speed computer network. This
network eventually grew to link hundreds of univer-
sities, defense contractors and research laboratories.
Later succeeded by the Internet, it also allowed hack-
ers to exchange software code and other information
widely, easily and cheaply—and also enabled them to
spread hacker norms of behavior.

The communal hacker culture was very strongly
present among a group of programmers—software
“hackers”—housed at the MIT’s Artificial Intelli-
gence Laboratory in the 1960s and 1970s (Levy,
1984). In the 1980s this group received a major jolt
when MIT licensed some of the code created by its
hacker employees to a commercial firm. This firm,
in accordance with normal commercial practice, then
promptly restricted access to the “source code” of that
software, and so prevented non-company personnel—
including MIT hackers who had participated in de-
veloping it—from continuing to use it as a platform
for further learning and development.

3 Hacker n. [originally, someone who makes furniture with
an axe]: (1) a person who enjoys exploring the details of pro-
grammable systems and how to stretch their capabilities, as op-
posed to most users, who prefer to learn only the minimum
necessary; (2) one who programs enthusiastically (even obses-
sively) or who enjoys programming rather than just theorizing
about programming; (3) a person capable of appreciating hack
value; (4) a person who is good at programming quickly. . . ;
(8) [deprecated]. A malicious meddler who tries to discover sen-
sitive information by poking around. Hence ‘password hacker’,
‘network hacker’. The correct term for this sense is cracker.
(Jargon, 2002).

G. von Krogh, E. von Hippel / Research Policy 32 (2003) 1149–1157 1151

Richard Stallman, a brilliant programmer at the
Artificial Intelligence Laboratory, was especially dis-
tressed and offended by this loss of access to com-
munally developed source code and also by a general
trend in the software world towards development of
proprietary software packages and the release of soft-
ware protected under licenses that prevented it from
being studied or modified by others. Stallman viewed
these practices as morally wrong impingements upon
the rights of software users to freely learn and create.
In response he founded the Free Software Foundation
in 1985, and set about to develop and diffuse a legal
mechanism that could preserve free access for all to
the software developed by software hackers (Moody,
2001). His pioneering idea was to use the existing
mechanism of copyright law to this end. Software au-
thors interested in preserving the status of their work
as “free” software could use their own copyright to
grant licenses on terms that would guarantee a num-
ber of rights to all future users. They could do this
by simply affixing a standard license to their software
that conveyed these rights.

The basic license developed by Stallman to imple-
ment this idea was the General Public License (GPL;
sometimes referred to as “copyleft”—a play on the
word “copyright”). Basic rights transferred to those
possessing a copy of free software include the right to
use it at no cost, the right to study its “source code,”
to modify it, and to distribute modified or unmodified
versions to others at no cost. Others developed licenses
conveying similar rights, and currently a number of
such licenses are used in the open source field.

The free software idea did not immediately be-
come mainstream, and industry was especially sus-
picious of it. In 1998, Bruce Perens and Eric Ray-
mond agreed that a significant part of the problem
resided in Stallman’s term “free” software, which
might understandably have an ominous ring to the
ears of business people. Accordingly they, along with
other prominent hackers, founded the “open source”
software movement (Perens, 1998). “Open source”
software incorporates essentially the same licensing
practices as those pioneered by the free software
movement. It differs from that movement primarily
on philosophical grounds, preferring to emphasize the
practical benefits of such licensing practices over is-
sues regarding the moral rightness and importance of
granting users the freedoms offered by both free and

open source software. The term “open source” is now
generally used by scholars to refer to free or open
source software, and that is the term we use in this
article.

2.1. Open source software development projects

Software can be termed open source independent
of how or by whom it has been developed: the term
denotes only the type of license under which it is
made available. However, the fact that open source
software is freely accessible to all has created some
typical open source software development practices
that differ greatly from commercial software devel-
opment models. Rather, these practices look very
much like the “hacker culture” behaviors described
earlier.

Because commercial software vendors typically
wish to license or sell the code they develop, they
have an incentive to sharply restrict access to the
source code of their software products to firm em-
ployees and contractors. The consequence of this
restriction is that only “insiders to the firm” possess
the information required to modify and improve that
proprietary code further (seeMeyer and Lopez, 1995,
for more on commercial software development). In
sharp contrast, all are offered free access to the source
code of open source software. This means that anyone
with the proper programming knowledge and moti-
vations can use, study, and modify any open source
software written by anyone. In early hacker days
described earlier, this freedom to learn and use and
modify software was exercised by informal sharing
and co-development of code—often by the physical
sharing and exchange of computer tapes, disks, or
punch cards upon which the code was recorded. In
current Internet days, rapid technological advances
in computer hardware and software and networking
technologies have made it much easier to create and
sustain a communal development style at ever-larger
scales. Also, implementing new projects is becom-
ing progressively easier as effective project designs
becomes better understood, and as infrastructures for
such the management of projects become available
on the Web.

Today, an open source software development project
is typically initiated by an individual or a small group
with an idea for something interesting they themselves

1152 G. von Krogh, E. von Hippel / Research Policy 32 (2003) 1149–1157

want for an intellectual or personal or business reason.
Raymond (1999, p. 32) suggests: “Every good work
of software starts by scratching a developer’s personal
itch.” “ . . . too often software developers spend their
days grinding away for pay at programs they neither
need nor love. But not in the (open source) world. . . .”
The project initiators also generally become the project
“owners” or “maintainers” who take on responsibility
for project management.4 Early on, this individual or
group may develop an initial, rough version of the code
that outlines the functionality envisioned. The source
code for this first version is then made freely available
to all via downloading from an Internet website estab-
lished by the project. The project founders also set up
mailing lists for the project. Those interested in using
or further developing the code can consult this list in
order to get help running the software or writing code.
The list can also be used to provide information or
distribute new open source code for others to discuss
and test further.

In the case of projects that are successful in at-
tracting interest, others do download and use and
“play with” the code—and some of these do go on
to create new and modified code based on their own
interests. Most then post what they have done on the
project website for use and critique by anyone who is
interested. New and modified code that is deemed to
be of sufficient quality and of general appeal by the
project maintainers is then added to the “authorized”
version of the code. In many projects the privilege
of adding to the authorized code is restricted to only
a few trusted “developers” who then become part of
a “community” of developers. Most contributors are
experienced, professional programmers. Some act as
independent individuals volunteering to develop code,
others are employees of organizations that support
their participation (e.g.Lakhani et al., 2002).

4 “The owner(s) [or “maintainers”] of an open source soft-
ware project are those who have the exclusive right, recognized
by the community at large, toredistribute modified versions.”
. . . “According to standard open-source licenses, all parties are
equal in the evolutionary game. But in practice there is a very
well-recognized distinction between ‘official’ patches [changes to
the software], approved and integrated into the evolving software
by the publicly-recognized maintainers, and ‘rogue’ patches by
third parties. Rogue patches are unusual and generally not trusted.”
(Raymond, 1999, p. 89).

3. Contents of the special issue

In the call for papers, the editors encouraged con-
tributions from scholars working in diverse fields,
and placed few restrictions on research methods used.
Our hope was to offer a collection of papers on open
source software that would both address interesting
questions and illustrate a number of pathways to doing
interesting work in this field. Contributors responded
to our call, and the articles in this special issue do
reflect a good variety of interesting questions and
methods and disciplines. In what follows, we briefly
describe the content of each article in this special
issue under three major headings: (1) motivations of
contributors to open source software projects; (2) how
the innovation process functions; (3) competitive dy-
namics of open source software. Finally, we describe a
research note that makes some interdisciplinary link-
ages with theory and research in social anthropology.
Table 1provides an overview of some contributions
the various articles make to these three topics.

3.1. Motivations of contributors

A central puzzle raised by the success of open
source software development is why thousands of
top-notch programmers appear to be contributing
freely to the provision of a public good. A number
of researchers have begun to explore this important
question. Emerging findings are easing the puzzle by
showing that contributing to open source software is
in fact a “private-collective” activity, involving im-
portant elements that remain private to code creators
even as the code itself becomes a public good (von
Hippel and von Krogh, 2003). Important among these
areprocess-related elements associated with the task
of coding such as learning and enjoyment (Lakhani et
al., 2002). Also, the enhancement of private reputa-
tions can play a role (Lerner and Tirole, 2000). In this
special issue, three empirical articles address aspects
of this important matter.

The first article, by Hertel, Niedner, and Herrmann
is entitled “Motivation of software developers in open
source projects: an Internet-based survey of contrib-
utors to the Linux Kernel.” These authors test two
extant models in the social science literature that
appear to fit the circumstances of individual con-
tributors to open source software projects. One, by

G
.

vo
n

K
rog

h
,

E
.

vo
n

H
ip

p
e

l/R
e

se
a

rch
P

o
licy

3
2

(2
0

0
3

)
1

1
4

9
–

1
1

5
7

1153

Table 1
Contributions in overview

Topics Issues Contributions

Hertel, Niedner,
and Herrmann

O’Mahony Franke and von
Hippel

von Krogh,
Spaeth, and
Lakhani

Bonaccorsi and
Rossi

West Zeitlyn

Motivations Individual’s
motivations

User’s motives to
improve code and
tolerance of time
investments

Increased user
satisfaction with
innovation tools

Protection of
software under open
source license

Practices to allow
open source
software to be
governable and
publically available

Innovation
process

Community-related
mechanisms

Social scripts for
joining a community

Evolution of
software architecture

The evolution of the
software architecture
relates to the
specialization of
newcomers in a
project

Competitive
dynamics

Rivalry between
commercial and
open source
software

Diffusion of open
source software in a
market dominated
by commercial
software

The impact of open
source software on
commercial software
manufacturers

Cooperation
between
manufacturers and
the open source
software movement

Hybrid strategies for
computer platforms
that include open
source software

Interdisciplinary
linkage

A view on open source
software from social
anthropology

Gift giving and
kinship amity

1154 G. von Krogh, E. von Hippel / Research Policy 32 (2003) 1149–1157

Klandermans (1997)is an explanation of incentives to
participate in social movements. A second deals with
motivational processes in small work teams, partic-
ularly “virtual teams” with members working in dif-
ferent places and coordinating their work mainly via
electronic media (Hertel, 2002; Hertel et al., 2002).
The authors find good fit between both models and
data they derived from a survey of 141 contributors to
the Linux kernel. They demonstrate that contributors’
involvement with the Linux kernel project is influ-
enced by their identification as Linux developers—an
interesting finding with respect to the importance of
community. They also find contributors to be mo-
tivated by pragmatic motives to improve their own
software and also group-related factors such as their
perceived indispensability for the team with which
they were working.

Siobhan O’Mahony’s article is an ethnographic
study entitled “Guarding the commons: how commu-
nity managed software projects protect their work.”
O’Mahony proposes an important addition to the con-
siderations generally raised with respect to motives
behind public goods production. She points out that
contributors to open source software do not simply
provide open access to their work without concern for
its ultimate fate. Instead, they have a very active con-
cern that their work remain part of the “commons,”
and energetically protect their work to this end.
Based on interviews with more than 70 contribu-
tors to open source projects, she explores how open
source project members encourage compliance with
the terms of their projects’ open source licenses in
various ways. For example, they may exercise sanc-
tioning via on-line discussions, and may make use
of trademarked brands and logos in order to insure
that the intellectual property they have contributed
remains in the commons.

Franke and von Hippel contribute an article entitled
“Satisfying heterogeneous user needs via innovation
toolkits: the case of Apache security software.” This
paper explores a frequently cited reason for contribut-
ing to open source software: people innovate to better
satisfy their own needs. In an empirical study of the
security needs of users of Apache security software,
they show that user needs are highly heterogeneous,
and that therefore many Apache users are dissatisfied
with standard Apache security functionality. Because
Apache is open source software, it offers a solution to

the customization problem that is not available in the
case of “closed” products users are free to modify the
software to better fit their individual needs. The au-
thors find that users that do modify the software are
more satisfied as a result. The authors conclude by
suggesting that this same strategy could be emulated
in many other fields by offering users “toolkits for
user innovation” to enable them to easily make prod-
uct changes and improvements without manufacturer
assistance.

3.2. Innovation process

A second major issue explored by authors in this
special issue concerns how the development process
works. In commercial software practice, the develop-
ment of software products hinges on tight management
of the processes: software firms regulate the relation-
ship to their programmers through carefully drafted
employment contracts, divide labor and allocate work
responsibilities along the development process, and
take precautions to prevent employees from leaking
software-related trade secrets and information to com-
petitors. For-profit programming firms seek to reduce
development costs and control quality by closely mon-
itoring what programmers do and how they do it (e.g.
Cusumano, 1992; Sawyer and Guinan, 1998; Austin,
2001). Open source software development differs fun-
damentally from these practices. Von Krogh, Spaeth,
and Lakhani contribute an article entitled “Commu-
nity, joining script, and specialization: a case study”,
that explores a novel aspect of open software devel-
opment practices: how contributors join projects.

Based on a clinical study of Freenet, an open source
project for peer-to-peer computing, the authors show
that the software architecture and functionality are
governed by a community consisting of developers
who can commit code to the authorized version of the
software. When joining such a community contrib-
utors adhere to a social “joining script”: they put in
considerably more technical and sophisticated work
than the average contributor to Freenet. After being
admitted into the community, the new developers spe-
cialize in mundane software development tasks before
moving on to more complex and technically difficult
work. The authors also find that newcomers often give
early gifts in terms software modules and features that
enhance the software architecture and functionality.

G. von Krogh, E. von Hippel / Research Policy 32 (2003) 1149–1157 1155

This gift giving is rewarding to the newcomer: he can
contribute software to the project by continuing to
work on those modules or features that he knows best.

3.3. Competitive dynamics

A third general topic addressed by two contributions
to this special issue is the competitive dynamics intro-
duced by open source software. First, what competitive
dynamics may unfold fromrivalry between commer-
cial software and their open source variant? Andrea
Bonaccorsi and Cristina Rossi, in their article “Why
open source software can succeed” propose that open
source software can shed new light on an old problem
in innovation theory: how new technologies can com-
pete in an environment dominated by technological
standards. Diffusion of technologies in the presence
of network externalities can explain why open source
software is becoming widespread in an environment
previously dominated by established proprietary stan-
dards. The authors note that recent developments in the
theory of critical mass in the diffusion of technologies
can be helpful to understand these phenomena. They
develop a simulation model in a SWARM environment
in order to identify and evaluate the relevant factors
in the diffusion of open source software. A number of
interesting findings emerge from this exercise. On the
one hand the diffusion of new technologies is asso-
ciated with positive beliefs among users. In the pres-
ence of well-established software standards effective
diffusion of open source software hinges on several
sources of network externality. On the other hand, in
the absence of incumbent advantages for established
commercial software, and given a belief among users
towards open source software, the only way commer-
cial software can control the market is for the software
manufacturer to engage in fierce competition on qual-
ity and understake massive investments in R&D. A ro-
bust general result of the simulation is that under many
plausible conditions open source software and com-
mercial software are likely to coexist, even in the limit.

Second, some manufacturers choose to circumvent
rivalry with the open source software movement and
search for ways tocooperatewith it. This raises a
general issue of what strategies manufacturers pur-
sue and what rewards ensue from these. In the ar-
ticle entitled “How open is open enough? Melding
proprietary and open source platform strategies” Joel

West argues that, since the early 1960s, a succes-
sion of computer platforms have provided an inte-
grated architecture of dominant hardware and soft-
ware. These platforms provided the basis for build-
ing complimentary assets such as application soft-
ware and peripherals, and manufacturers’ strategies for
building and leveraging these platforms have provided
them with economic rent. Like Profs. Bonaccorsi and
Rossi, Prof. West is concerned with the conditions
under which open source software can successfully
compete with dominant commercial technologies, but
adds that manufacturers’ involvement in open source
software matters too. Based on the cases of IBM, Sun
Microsystems, and Apple Computer, he shows signifi-
cant differences among manufacturers’ resource com-
mitments to open source and their hybrid strategies of
melding open source and proprietary platforms. The
author also proposes under what conditions a manu-
facturer may prefer a mix of strategies to the pure-open
or pure-closed alternatives.

3.4. An interdisciplinary linkage

In our view, at this early stage research and theory
building on open source software development should
be receptive to debates in several fields and attempt
to make linkages with important work done in other
disciplines. The last article in this special issue is a
research note written from a social anthropological
perspective. In “Gift economies in the development
of open source software: anthropological reflections”,
David Zeitlyn’s intention is to show how anthropolog-
ical theory may help future research. He offers some
important ideas regarding gift giving behavior in open
source software development, by applying the concept
of “kinship amity”. He suggest that family-oriented
structures can enhance our understanding of the con-
tributions individuals make to open source software.

Acknowledgements

We follow the attractive tradition of open source
software projects in publicly acknowledging the many
contributions made to the development of this special
issue. First, we would like to thank the authors who
sent in manuscripts for review. Interestingly, many
were by young academics who contributed excellent

1156 G. von Krogh, E. von Hippel / Research Policy 32 (2003) 1149–1157

papers. Next, we thank those who served as reviewers
for the papers submitted to the special issue, many of
whom reviewed more than one paper! Accustomed
to labor in noble anonymity, they will be surprised to
find themselves listed with thanks. Next, we thank the
two seniorResearch Policyeditors, Keith Pavit and
Gary Pisano, who approved our proposal to create
this special issue ofResearch Policyand supported
us along the way. Our editorial assistant, Stefan Hae-
fliger, deserves great thanks for the extremely valuable
assistance he provided in coordinating the editorial
process. We are also very grateful for the financial sup-
port from the University of St. Gallen. Our thanks also
to Susan Lees from University of Sussex, as well as
Edith Boomers and Lisa Muscolini from Elsevier Sci-
ence, for their great support on publishing matters, and
to all our colleagues at both the Sloan School and at
University of St. Gallen, who supported this endeavor.

Reviewers for the special issue
Ritu Agarwal University of Maryland
Rafael Andreu IESE
Rob Austin Harvard University
Jim Bessen Independent
Paul Carlile Massachusetts Institute

of Technology
Michael Cusumano Massachusetts Institute

of Technology
Giovanni Dosi Scuola Superiore S. Anna
Paul Duguid University of

California at Berkeley
Thomas Eberle University of St. Gallen
Elgar Fleisch University of St. Gallen
Simon Gächter University of St. Gallen
Bob Galliers London School of

Economics and
Political Science

Robert Grant Georgetown University
Dietmar Harhoff University of Munich
Sirkka L. Jarvenpaa University of Texas at

Austin
Justin Johnson Cornell University
Stefan Koch University of Vienna
Bruce Kogut INSEAD
Richard N. Langlois University of

Connecticut
Kwanghui Lim National University

Singapore

Janne Ljungberg Göteborg University
Bengt-Åke Lundvall University of Aalborg
Alan D. MacCormack Harvard University
Anca Metiu INSEAD
Eric Monteiro Norwegian University

of Science and
Technology

Jae Yun Moon New York University
David Mowery University of

California at Berkeley
Julia Porter

Liebeskind
University of Southern
California

Emanuela Prandelli Bocconi University
Eric Raymond Independent
Ron Sanchez IMD
Mohan Sawhney Northwestern University
Lee Sproull New York University
Jean Tirole IDEI Toulouse
John Van Maanen Massachusetts Institute

of Technology
Steven Weber University of

California at Berkeley
Etienne Wenger Independent
Ulrich Witt University of Jena

References

Austin, R.D., 2001. The effects of time pressure on quality in
software development: an agency model. Information Systems
Research 12 (2), 195–207.

Cusumano, M.C., 1992. Shifting economies: from craft production
to flexible systems and software factories. Research Policy
21 (5), 453–480.

Dam, K.W., 1995. Some economic considerations in the intellectual
property protection of software. Journal of Legal Studies 24 (2),
321–377.

Granstrand, O., 1999. The Economics and Management of
Intellectual Property. Edward Elgar, Cheltham.

Hertel, G., 2002. Management virtueller teams auf der
basis sozialpsychologischer modelle. In: Witte, E.H. (Ed.),
Sozialpsychologie Wirtschaflicher Prozesse. Pabst Publishers,
Lengerich, Germany, pp. 172–202.

Hertel, G., Konradt, U., Orlikowski, B., 2002. Managing distance
by interdependence: goal setting, task interdependence, and
team-based rewards in virtual teams, submitted for publication.

Jargon File, 2002. The On-Line Hacker Jargon File, Version
4.3.3, 20 September 2002.http://www.tuxedo.org/∼esr/jargon/
html/index.html (Raymond, E., 1996. The Jargon File is a
collective on-line work by computer hackers. The New Hacker’s
Dictionary, third ed. MIT Press, Cambridge, MA).

Klandermans, B., 1997. The Social Psychology of Protest. Basil
Blackwell, Oxford.

http://www.tuxedo.org/~esr/jargon/html/index.html
http://www.tuxedo.org/~esr/jargon/html/index.html

G. von Krogh, E. von Hippel / Research Policy 32 (2003) 1149–1157 1157

Lakhani, K., Wolf, B., Bates, J., DiBona, C., 2002. The
Boston Consulting Group Hacker Survey. Available at:
http://www.osdn.com/bcg.

Lerner, J., Tirole, J., 2000. The Simple Economics of Open Source,
NBER Working Paper Series, WP 7600. Harvard University,
Cambridge, MA.

Levy, S., 1984. Hackers. Anchor/Doubleday, New York.
Meyer, M.H., Lopez, L., 1995. Technology strategy in a software

products company. Journal of Product Innovation Management
12 (4), 194–306.

Moerke, K.A., 2000. Free speech to a machine. Minnesota Law
Review 84 (4), 1007–1008.

Moody, G., 2001. Rebel Code. Perseus Publishing, Cambridge,
MA.

Perens, B., 1998. The Open Source Definition. Available at:
http://perens.com/articles/osd.html.

Raymond, E., 1999. The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary.
O’Reilly, Sebastopol, CA.

Sawyer, S., Guinan, P.J., 1998. Software development: process and
performance. IBM Systems Journal 37 (4), 552–569.

Simon, E., 1996. Innovation and intellectual property protection:
the software industry perspective. Columbia Journal of World
Business 31 (1), 30–37.

Von Hippel, E., von Krogh, G., 2003. The private-collective
innovation model in open source software development.
Organization Science, in press.

http://www.osdn.com/bcg
http://perens.com/articles/osd.html

