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Case-based reasoning is a recent approach to problem 

solving and learning that has got a lot of attention over the 
last few years. Originating in the US, the basic idea and 
underlying theories have spread to other continents, and  
we are now within a period of highly active research in 
case-based reasoning in Europe, as well. This paper gives 
an overview of the foundational issues related to case- 
based reasoning, describes some of the leading methodo- 
logical approaches within the field, and exemplifies the 
current state through pointers to some systems. Initially, a 
general framework is defined, to which the subsequent 
descriptions and discussions will refer. The framework is 
influenced by recent methodologies for knowledge level 
descriptions of intelligent systems. The methods for case 
retrieval, reuse, solution testing, and learning are 
summarized, and their actual realization is discussed in the 
light of a few example systems that represent different 
CBR approaches. We also discuss the role of case-based 
methods as one type of reasoning and learning method 
within an integrated system architecture.  

1. Introduction 

Over the last few years, case-based reasoning 
(CBR) has grown from a rather specific and isolated 
research area to a field of widespread interest. 
Activities are rapidly growing - as seen by the in-
creased rate of research papers, availability of 
commercial products, and also reports on 
applications in regular use. In Europe, researchers 
and application developers recently met at the First 
European Workshop on Case-based reasoning, which 

took place in Germany, November 1993. It gathered 
around 120 people, and more than 80 papers on 
scientific and application-oriented research were 
presented. 

 
1.1. Background and motivation. 

Case-based reasoning is a problem solving para-
digm that in many respects is fundamentally different 
from other major AI approaches.  Instead  of relying 
solely on general knowledge of a problem domain, or 
making associations along generalized relationships 
between problem descriptors and conclusions, CBR 
is able to utilize the specific knowledge of previously 
experienced, concrete problem situations (cases). A 
new problem is solved by finding a similar past case, 
and reusing it in the new problem situation. A second 
important difference is that CBR also is an approach 
to incremental, sustained learning, since a new 
experience is retained each time a problem has been 
solved, making it immediately available for future 
problems.  

This paper presents an overview of the field, in 
terms of its underlying foundations, its current state-
of-the-art, and future trends. The description of CBR 
principles, methods, and systems is made within a 
general analytic scheme. Other authors have recently 
given overviews of case-based reasoning (Ch. 1 in 
[51], Introductory section of [18], [36,61]). Our 
overview differs in four major ways from these 
accounts: First, we initially specify a general 
descriptive framework to which the subsequent 
method descriptions will refer. Second, we put a 
strong emphasis on the methodological issues of 
case-based reasoning, and less on a discussion of 
suitable application types and on the advantages of 
CBR over rule-based systems. (This has been taken 
very well care of in the documents cited above).  
Third, we strive to maintain a neutral view of 
existing CBR approaches, unbiased by a particular  
'school'. And finally, we include results from the 
European CBR arena, which unfortunately have been 
missing in American CBR reports. (Our own experi-
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ence from active CBR research over the last 5 years 
started out from different backgrounds and moti-
vations, and we may have developed different views 
to some of the major issues involved. We will give 
examples of our respective priorities and concerns 
related to CBR research as part of the discussion 
about future trends towards the end of the paper.) 

What is case-based reasoning? Basically: To solve 
a new problem by remembering a previous similar 
situation and by reusing information and knowledge 
of that situation. Let us illustrate this by looking at 
some typical problem solving situations:  

 
- A physician - after having examined a particular 

patient in his office - gets a reminding to a patient 
that he treated two weeks ago. Assuming that the 
reminding was caused by a similarity of important 
symptoms (and not the patient's hair colour, say), 
the physician uses the diagnosis and treatment of 
the previous patient to determine the disease and 
treatment for the patient in front of him. 

- A drilling engineer, who has experienced two 
dramatic blowout situations, is quickly reminded 
of one of these situations (or both) when the 
combination of critical measurements matches 
those of a blow out case. In particular, he may get 
a reminding to a mistake he made during a 
previous blowout, and use this to avoid repeating 
the error once again. 

- A financial consultant working on a difficult credit 
decision task uses a reminding to a previous case, 
which involved a company in similar trouble as 
the current one, to recommend that the loan 
application should be refused.  
 

1.2. Case-based problem solving. 

As the above examples indicate, reasoning by re-
using past cases is a powerful and frequently applied 
way to solve problems for humans. This claim is also 
supported by results from cognitive psychology 
research. Part of the foundation for the case-based 
approach is its psychological plausibility. Several 
studies have given empirical evidence for the 
dominating role of specific, previously experienced 
situations (what we call cases) in human problem 
solving (e.g. [53]). Schank [54] developed a theory of 
learning and reminding based on retaining of 
experience in a dynamic, evolving memory1 structure. 

                                                        
1 The term ‘memory’ is often used to refer to the storage 

structure that holds the existing cases, i.e. to the case base. A 

Anderson [6] has shown that people use past cases as 
models when learning to solve problems, particularly 
in early learning. Other results (e.g. by W.B. Rouse 
[75]) indicate that the use of past cases is a 
predominant problem solving method among experts 
as well. Studies of problem solving by analogy (e.g. 
[16,22]) also shows the frequent use of past experi-
ence in solving new and different problems. Case-
based reasoning and analogy are sometimes used as 
synonyms (e.g. in [16]). Case-based reasoning can be 
considered a form of intra-domain analogy. However, 
as will be discussed later, the main body of analogical 
research [14,23,30] has a different focus, namely 
analogies across domains.  

In CBR terminology, a case usually denotes a 
problem situation. A previously experienced situa-
tion, which has been captured and learned in such a 
way that it can be reused in the solving of future 
problems, is referred to as a past case, previous  
case, stored case, or retained case. Correspondingly, a 
new case or unsolved case is the description of a new 
problem to be solved. Case-based reasoning is - in 
effect - a cyclic and integrated process of solving a 
problem, learning from this experience, solving a new 
problem, etc.  

Note that the term problem solving is used here in 
a wide sense, coherent with common practice within 
the area of knowledge-based systems in general. This 
means that problem solving is not necessarily the 
finding of a concrete solution to an application 
problem, it may be any problem put forth by the user. 
For example, to justify or criticize a solution proposed 
by the user, to interpret a problem situation, to 
generate a set of possible solutions, or generate 
expectations in observable data are also problem 
solving situations.  

 
1.3. Learning in Case-based Reasoning. 

A very important feature of case-based reasoning 
is its coupling to learning. The driving force behind 
case-based methods has to a large extent come from 
the machine learning community, and case-based 
reasoning is also regarded a subfield of machine 
learning2. Thus, the notion of case-based reasoning 

                                                        
memory, thus, refers to what is remembered from previous 
experiences. Correspondingly, a reminding is a pointer structure 
to some part of memory.  
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does not only denote a particular reasoning method, 
irrespective of how the cases are acquired, it also 
denotes a machine learning paradigm that enables 
sustained learning by updating the case base after a 
problem has been solved. Learning in CBR occurs as 
a natural by-product of problem solving. When a 
problem is successfully solved, the experience is 
retained in order to solve similar problems in the 
future. When an attempt to solve a problem fails, the 
reason for the failure is identified and remembered in 
order to avoid the same mistake in the future.  

Case-based reasoning favours learning from ex-
perience, since it is usually easier to learn by retaining 
a concrete problem solving experience than to 
generalize from it. Still, effective learning in CBR 
requires a well worked out set of methods in  
order to extract relevant knowledge from the 
experience, integrate a case into an existing knowl-
edge structure, and index the case for later matching  
with similar cases.  

 
1.4. Combining cases with other knowledge. 

By examining theoretical and experimental results 
from cognitive psychology, it seems clear that human 
problem solving and learning in general are processes 
that involve the representation and utilization of 
several types of knowledge, and the combination of 
several reasoning methods. If cognitive plausibility is 
a guiding principle, an architecture for intelligence 
where the reuse of cases is at the centre, should also 
incorporate other and more general types of 
knowledge in one form or another. This is an issue of 
current concern in CBR research [67]. 

The rest of this paper is structured as follows: The 
next section gives a brief historical overview  
of the CBR field. This is followed by a grouping of 
CBR methods into a set of characteristic types, and a 
presentation of the descriptive framework which will 
be used throughout the paper to discuss CBR 
methods. Sections 4 to 8 discuss representation is-
sues and methods related to the four main tasks of 
case-based reasoning, respectively. In section 9 we 
look at CBR in relation to integrated architectures and 

                                                        
2The learning approach of case-based reasoning is sometimes 

referred to as case-based learning. This term is sometimes also 
used synonymous with example-based learning, and may 
therefore point to classical induction and other generalization-
driven learning methods. Hence, we will here use the term case-
based reasoning both for the problem solving and learning part, 
and explicitly state which part we talk about whenever necessary. 

multi-strategy problem solving and learning. This is 
followed by a short description of some fielded 
applications, and a few words about CBR develop-
ment tools. The conclusion briefly summarizes the 
paper, and point out some possible trends.  

2. History of the CBR field  

The roots of case-based reasoning in AI are found 
in the works of Roger Schank on dynamic memory, 
and the central role that a reminding of earlier 
situations (episodes, cases) and situation patterns 
(scripts, MOPs) have in problem solving and learning 
[54]. Other trails into the CBR field have come from 
the study of analogical reasoning [22], and - further 
back - from theories of concept formation, problem 
solving and experiential learning within philosophy 
and psychology (e.g. [62,69,72]). For example, 
Wittgenstein observed that ‘natural concepts’, i.e., 
concepts that are part of the natural world - such as 
bird, orange, chair, car, etc. - are polymorphic. That 
is, their instances may be categorized in a variety of 
ways, and it is not possible to come up with a useful 
classical definition in terms of a set of necessary and 
sufficient features for such concepts. An answer to 
this problem is to represent a concept extensionally, 
defined by its set of instances - or cases.  

The first system that might be called a case-based 
reasoner was the CYRUS system, developed by Janet 
Kolodner [33, 34] at Yale University (Schank's 
group). CYRUS was based on Schank's dynamic 
memory model and MOP theory of problem solving 
and learning [54]. It was basically a question-
answering system with knowledge of the various 
travels and meetings of former US Secretary of State 
Cyrus Vance. The case memory model developed for 
this system has later served as basis for several other 
case-based reasoning systems (including 
MEDIATOR [59], PERSUADER [68], CHEF [24], 
JULIA [27], CASEY [38]).  

Another basis for CBR, and another set of models, 
was developed by Bruce Porter and his group [48] at 
the University of Texas, Austin. They initially 
addressed the machine learning problem of concept 
learning for classification tasks. This lead to the 
development of the PROTOS system [9], which 
emphasized integrating general domain knowledge 
and specific case knowledge into a unified repre-
sentation structure. The combination of cases with 
general domain knowledge was pushed further in 
GREBE [12], an application in the domain of law. 
Another early significant contribution to CBR was the 
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work by Edwina Rissland and her group at the 
University of Massachusetts, Amhearst. With several 
law scientists in the group, they were interested in the  
role of precedence reasoning in legal judgements 
[52]. Cases (precedents) are here not used to produce 
a single answer, but to interpret a situation in court, 
and to produce and assess arguments for both parties. 
This resulted in the HYPO system [10], and later the 
combined case-based and rule-based system 
CABARET [60]. Phyllis Koton at MIT studied the 
use of case-based reasoning to optimize performance 
in an existing knowledge based system, where the 
domain (heart failure) was described by a deep, causal 
model. This resulted in the CASEY system [38], in 
which case-based and deep model-based reasoning 
was combined. 

In Europe, research on CBR was taken up a little 
later than in the US. The CBR work seems to have 
been stronger coupled to expert systems development 
and knowledge acquisition research than in the US. 
Among the earliest results was the work on CBR for 
complex technical diagnosis within the MOLTKE 
system, done by Michael Richter together with Klaus 
Dieter Althoff and others at the University of 
Kaiserslautern [4]. This lead to the PATDEX system 
[50], with Stefan Wess as the main developer, and 
later to several other systems and methods [5]. At 
IIIA in Blanes, Enric Plaza and  Ramon López de 
Mántaras developed a case-based learning apprentice 
system for medical diagnosis [46], and Beatrice 
Lopez investigated the use of case-based methods for 
strategy-level reasoning [39]. In Aberdeen, Derek 
Sleeman's group studied the use of cases for 
knowledge base refinement. An early result was the 
REFINER system, developed by Sunil Sharma [57]. 
Another result is the IULIAN system for theory 
revision by Ruediger Oehlman [44]. At the University 
of Trondheim, Agnar Aamodt and colleagues at 
Sintef studied the learning aspect of CBR in the 
context of knowledge acquisition in general, and 
knowledge maintenance in particular. For problem 
solving, the combined use of cases and general 
domain knowledge was focused [1]. This lead to the 
development of the CREEK system and integration 
framework [2], and to continued work on knowledge-
intensive case-based reasoning. On the cognitive 
science side, early work was done on analogical 
reasoning by Mark Keane, at Trinity College, Dublin, 
[29], a group that has developed into a strong envi-
ronment for this type of CBR. In Gerhard Strube's 
group at the University of Freiburg, the role of 
episodic knowledge in cognitive models was 

investigated in the EVENTS project [66], which lead 
to the group''s current research profile of cognitive 
science and CBR.  

Currently, the CBR activities in the United States 
as well as in Europe are spreading out (see, e.g. 
[8,19,20,28], and the rapidly growing number of 
papers on CBR in almost any AI journal). Germany 
seems to have taken a leading position in terms of 
number of active researchers, and several groups  
of significant size and activity level have been 
established recently. From Japan and other Asian 
countries, there are also activity points, for example 
in India [71]. In Japan, the interest is to a large extent 
focused on the parallel computation approach to CBR 
[32]. 

3. Fundamentals of case-based reasoning  
 methods 

Central tasks that all case-based reasoning meth-
ods have to deal with are to identify the current 
problem situation, find a past case similar to the new 
one, use that case to suggest a solution to the current 
problem, evaluate the proposed solution, and update 
the system by learning from this experience. How this 
is done, what part of the process is focused, what type 
of problems drives the methods, etc. varies 
considerably, however. Below is an attempt to 
classify CBR methods into types with roughly similar 
properties in this respect. 

 
3.1. Main types of CBR methods. 

The CBR paradigm covers a range of different 
methods for organizing, retrieving, utilizing and 
indexing the knowledge retained in past cases. Cases 
may be kept as concrete experiences, or a set of 
similar cases may form a generalized case. Cases may 
be stored as separate knowledge units, or split up into 
subunits and distributed within the knowledge 
structure. Cases may be indexed by a prefixed or open 
vocabulary, and within a flat or hierarchical index 
structure. The solution from a previous case may be 
directly applied to the present problem, or modified 
according to differences between the two cases. The 
matching of cases, adaptation of solutions, and 
learning from an experience may be guided and 
supported by a deep model of general domain knowl-
edge, by more shallow and compiled knowledge, or 
be based on an apparent, syntactic similarity only. 
CBR methods may be purely self-contained and 
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automatic, or they may interact heavily with the user 
for support and guidance of its choices. Some CBR 
methods assume a rather large amount of widely dis-
tributed cases in its case base, while others are based 
on a more limited set of typical ones. Past cases may 
be retrieved and evaluated sequentially or in parallel. 

Actually, "case-based reasoning" is just one of a 
set of terms used to refer to systems of this kind. This 
has lead to some confusion, given that case-based 
reasoning is a term used both as a generic term for 
several types of more specific approaches, as well as 
for one such approach. To some extent, this can also 
be said for analogy reasoning. An attempt of a 
clarification, although not resolving the confusion, of 
the terms related to case-based reasoning are given 
below.  

Exemplar-based reasoning. The term is derived 
from a classification of different views to concept 
definition into "the classical view", "the probabilistic 
view", and "the exemplar view" (see [62]).  In the 
exemplar view, a concept is defined extensionally, as 
the set of its exemplars. CBR methods that address 
the learning of concept definitions (i.e. the problem 
addressed by most of the research in machine 
learning), are sometimes referred to as exemplar-
based. Examples are early papers by Kibler and Aha 
[31], and Bareiss and Porter [48]. In this approach, 
solving a problem is a classification task, i.e., finding 
the right class for the unclassified exemplar. The class 
of the most similar past case becomes the solution to 
the classification problem. The set of classes 
constitutes the set of possible solutions. Modification 
of a solution found is therefore outside the scope of 
this method.  

Instance-based reasoning. This is a specialization 
of exemplar-based reasoning into a highly syntactic 
CBR-approach. To compensate for lack of guidance 
from general background knowledge, a relatively 
large number of instances are needed in order to close 
in on a concept definition. The representation of the 
instances is usually simple (e.g. feature vectors), since 
the major focus is on studying automated learning 
with no user in the loop. Instance-based reasoning 
labels recent work by Kibler and Aha and colleagues 
[7], and serves to distinguish their methods from more 
knowledge-intensive exemplar-based approaches (e.g. 
Protos' methods). Basically, this is a non-generaliza-
tion approach to the concept learning problem ad-
dressed by classical, inductive machine learning 
methods. 

Memory-based reasoning. This approach empha-
sizes a collection of cases as a large memory, and 

reasoning as a process of accessing and searching in 
this memory. Memory organization and access is a 
focus of the case-based methods. The utilization of 
parallel processing techniques is a characteristic of 
these methods, and distinguishes this approach from 
the others. The access and storage methods may rely 
on purely syntactic criteria, as in the MBR-Talk 
system [63], or they may attempt to utilize general 
domain knowledge, as the work done in Japan on 
massive parallel memories [32].  

Case-based reasoning. Although case-based 
reasoning is used as a generic term in this paper,  
the typical case-based reasoning methods have some 
characteristics that distinguish them from the other 
approaches listed here. First, a typical case is usually 
assumed to have a certain degree of richness of 
information contained in it, and a certain complexity 
with respect to its internal organization. That is, a 
feature vector holding some values and a 
corresponding class is not what we would call a 
typical case description. What we refer to as typical 
case-based methods also has another characteristic 
property: They are able to modify, or adapt, a re-
trieved solution when applied in a different problem 
solving context. Paradigmatic case-based methods 
also utilize general background knowledge - although 
its richness, degree of explicit representation, and role 
within the CBR processes varies. Core methods of 
typical CBR systems borrow a lot from cognitive 
psychology theories. 

Analogy-based reasoning. This term is some-times 
used, as a synonym to case-based reasoning, to 
describe the typical case-based approach just 
described [70]. However, it is also often used to 
characterize methods that solve new problems  
based on past cases from a different domain, while 
typical case-based methods focus on indexing and 
matching strategies for single-domain cases. Re-
search on analogy reasoning is therefore a subfield 
concerned with mechanisms for identification and 
utilization of cross-domain analogies [23, 30]. The 
major focus of study has been on the reuse of a past 
case, what is called the mapping problem: Finding a 
way to transfer, or map, the solution of an identified 
analogue (called source or base) to the present 
problem (called target). 

Throughout the paper we will continue to use the 
term case-based reasoning in the generic sense, al-
though our examples, elaborations, and discussions 
will lean towards CBR in the more typical sense. The 
fact that a system is described as an example of some 
other approach, does not exclude it from being a 
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typical CBR system as well. To the degree that more 
special examples of, e.g., instance-based, memory-
based, or analogy-based methods will be discussed, 
this will be stated explicitly. 

 
3.2. A descriptive framework. 

Our framework for describing CBR methods and 
systems has two main parts: 
- A process model of the CBR cycle 
- A task-method structure for case-based reasoning 

 
The two models are complementary and represent 

two views on case-based reasoning. The first is a 
dynamic model that identifies the main subprocesses 
of a CBR cycle, their interdependencies and products. 
The second is a task-oriented view, where a task 
decomposition and related problem solving methods 
are described. The framework will be used in 
subsequent parts to identify and discuss important 
problem areas of CBR, and means of dealing with 
them. 

  
3.3. The CBR cycle 

At the highest level of generality, a general CBR 
cycle may be described by the following four pro-
cesses3: 
1. RETRIEVE the most similar case or cases 
2. REUSE the information and knowledge in that 

case to solve the problem 
3. REVISE the proposed solution 
4. RETAIN the parts of this experience likely to be 

useful for future problem solving 
 
A new problem is solved by retrieving one or 

more previously experienced cases, reusing the  
case in one way or another, revising the solution 
based on reusing a previous case, and retaining the 
new experience by incorporating it into the existing 
knowledge-base (case-base). The four processes each 
involve a number of more specific steps, which will 
be described in the task model. In Fig. 1, this cycle is 
illustrated.  

An initial description of a problem (top of Fig. 1) 
defines a new case. This new case is used to RE-
TRIEVE a case from the collection of previous cases. 
The retrieved case is combined with the new case - 
through REUSE - into a solved case, i.e. a proposed 

                                                        
3As a mnemonic, try "the four REs". 

solution to the initial problem. Through the REVISE 
process this solution is tested for success, e.g. by 
being applied to the real world environment or 
evaluated by a teacher, and repaired if failed. During 
RETAIN, useful experience is retained for future 
reuse, and the case base is updated by a new learned 
case, or by modification of some existing cases.  

As indicated in the figure, general knowledge 
usually plays a part in this cycle, by supporting the 
CBR processes. This support may range from very 
weak (or none) to very strong, depending on the type 
of CBR method. By general knowledge we here mean 
general domain-dependent knowledge, as opposed to 
specific knowledge embodied by cases.  
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Fig. 1. The CBR Cycle 
 

For example, in diagnosing a patient by retrieving and 
reusing the case of a previous patient, a model of 
anatomy together  with causal relationships between 
pathological states may constitute the general 
knowledge used by a CBR system. A set of rules may 
have the same role. 
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3.4. A hierarchy of CBR tasks 

The process view just described was chosen in 
order to emphasize on CBR as a cycle of sequential 
steps. To further decompose and describe the four 
top-level steps, we switch to a task-oriented view, 
where each step, or subprocess, is viewed as a task 
that the CBR reasoner has to achieve. While a 
process-oriented view enables a global, external  
view to what is happening, a task-oriented view is 
suitable for describing the detailed mechanisms from 
the perspective of the CBR reasoner itself. This is 
coherent with a task-oriented view of knowledge level 
modelling [73].  

At the knowledge level, a system is viewed as an 
agent which has goals, and means to achieve its goals. 
A system description can be made from three 
perspectives: Tasks, methods and domain knowledge 
models. Tasks are set up by the goals of the system, 
and a task is performed by applying one or more 
methods. For a method to be able to accomplish a 
task, it needs knowledge about the general application 
domain as well as information about the  current 
problem and its context. Our framework and analysis 
approach is strongly influenced by knowledge  
level modelling methods, particularly the Compo-
nents of Expertise methodology [64.65].  

The task-method structure we will refer to in 
subsequent parts of the paper is shown in Fig. 2. 
Tasks have node names in bold letters, while methods 
are written in italics. The links between task nodes 
(plain lines) are task decompositions, i.e., part-of 
relations, where the direction of the relationship is 
downwards. The top-level task is problem solving 
and learning from experience and the method to 
accomplish the task is case-based reasoning 
(indicated in a special way by a stippled arrow). This 
splits the top-level task into the four major CBR tasks 
corresponding to the four processes of Fig.1, 
retrieve, reuse, revise, and retain. All the four tasks 
are necessary in order to perform the top-level task. 
The retrieve task is, in turn, partitioned in the same 
manner (by a retrieval method) into the tasks identify 
(relevant descriptors), search (to find a set of past 
cases), initial match (the relevant descriptors to past 
cases), and select (the most similar case). 

All task partitions in the figure are complete, i.e. 
the sets of subtasks of a task are intended to be 
sufficient to accomplish the task, at this level of 
description. The figure does not show any control 
structure over the subtasks, although a rough 

sequencing of them is indicated by having put earlier 
subtasks higher up on the page than those that follow 
(for a particular set of subtasks). The actual control is 
specified as part of the problem solving method. The 
relation between tasks and methods (stippled lines) 
identify alternative methods applicable for solving a 
task. A method specifies the algorithm that identifies 
and controls the execution of subtasks, and accesses 
and utilizes the knowledge and information needed to 
do this. The methods shown are high-level method 
classes, from which one or more specific methods 
should be chosen. The method set as shown is 
incomplete, i.e. one of the methods indicated may be 
sufficient to solve the task, several methods may be 
combined, or there may be other methods that can do 
the job. The methods shown in the figure are task 
decomposition and control methods. At the bottom 
level of the task hierarchy (not shown), a task is 
solved directly, i.e. by what may be referred to as task 
execution methods. 

 
 3.5. CBR Problem Areas 

As for AI in general, there are no universal CBR 
methods suitable for every domain of application. The 
challenge in CBR as elsewhere is to come up with 
methods that are suited for problem solving and 
learning in particular subject domains and for par-
ticular application environments. In line with  
the task model just shown, core problems addressed 
by CBR research can be grouped into five areas. A set 
of coherent solutions to these problems constitutes a 
CBR method:  

 
• Knowledge representation 
• Retrieval methods 
• Reuse methods 
• Revise methods  
• Retain methods 
 

In the next five sections, we give an overview of 
the main problem issues related to these five areas, 
and  exemplify how they are solved by some existing 
methods. Our examples will be drawn from the six 
systems PROTOS, CHEF, CASEY, PATDEX, 
BOLERO, and CREEK. In the recently published 
book by Janet Kolodner [37] these problems are 
discussed and elaborated to substantial depth, and 
hints and guidelines on how to deal with them are 
given. 
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4. Representation of Cases  

A case-based reasoner is heavily dependent on the 
structure and content of its collection of cases - often 
referred to as its case memory. Since a problem is 
solved by recalling a previous experience suitable for 
solving the new problem, the case search and 
matching processes need to be both effective and 
reasonably time efficient. Further, since the 
experience from a problem just solved has to be 
retained in some way, these requirements also apply 
to the method of integrating a new case into the 
memory. The representation problem in CBR is 
primarily the problem of deciding what to store in a 
case, finding an appropriate structure for describing 
case contents, and deciding how the case memory 
should be organized and indexed for effective 
retrieval and reuse. An additional problem is how to 
integrate the case memory structure into a model of 
general domain knowledge, to the extent that such 
knowledge is incorporated. 

In the following subsection, two influential case 
memory models are briefly reviewed: The dynamic 
memory model of Schank and Kolodner, and the 
category-exemplar model of Porter and Bareiss4.  

 
4.1. The Dynamic Memory Model  

As previously mentioned, the first system that may 
be referred to as a case-based reasoner was 
Kolodner's CYRUS system, based on Schank's 
dynamic memory model [54]. The case memory in 
this model is a hierarchical structure of what is called 
'episodic memory organization packets' (E-MOPs 
[33,34]), also referred to as generalized episodes [38]. 
This model was developed from Schank's more 
general MOP theory. The basic idea is to organize 
specific cases that share similar properties under a 
more general structure (a generalized episode - GE). 
A generalized episode contains three different types 
of objects: Norms, cases and indices. Norms are 
features common to all cases indexed under a GE. 
Indices are features that discriminate between a GE's 
cases. An index may point to a more specific 

                                                        
4Other early models include Rissland and Ashley's HYPO 

system [52] in which cases are grouped under a set of domain-
specific dimensions, and Stanfill and Waltz' MBR model, 
designed for parallel computation rather than knowledge-based 
matching. 

generalized episode, or directly to a case. An index is 
composed of two terms: An index name and an index 
value.  

Fig. 3 illustrates this structure. The figure 
illustrates a complex generalized episode, with its 
underlying cases and more specific GE. The entire 
case memory is a discrimination network where a 
node is either a generalized episode (containing the 
norms), an index name, index value or a case.  Each 
index-value pair points from a generalized episode to 
another generalized episode or to a case. An index 
value may only point to a single case or a single gen-
eralized episode. The indexing scheme is redundant, 
since there are multiple paths to a particular case or 
GE. This is illustrated in the figure by the indexing of 
case1. 

When a new case description is given and the best 
matching is searched for, the input case structure is 
'pushed down' the network structure, starting at the 
root node. The search procedure is similar for case 
retrieval as for case storing. When one or more fea-
tures of the case match one or more features of a GE, 
the case is further discriminated based on its 
remaining features. Eventually, the case with most 
features in common with the input case is found5. 
During storing of a new case, it is discriminated by 
indexing it under different indices below its most 
specific generalized episode. If - during the storage of 
a case - two cases (or two GEs) end up under the 
same index, a new generalized episode is 
automatically created. Hence, the memory structure is 
dynamic in the sense that similar parts of two case 
descriptions are dynamically generalized into a GE, 
and the cases are indexed under this GE by their dif-
ference features. 

A case is retrieved by finding the GE with most 
norms in common with the problem description. 
Indices under that GE are then traversed in order to 
find the case that contains most of the additional 
problem features. Storing a new case is performed in 
the same way, with the additional process of 
dynamically creating generalized episodes, as 
described above. Since the index structure is a 
discrimination network, a case (or pointer to a case) is 

                                                        
5This may not be the right similarity criterion, and is 

mentioned just to illustrate the method. Similarity criteria may 
favour matching of a particular subset of features, or there may be 
other means of assessing case similarity. Similarity assessment 
criteria can in turn be used to guide the search - for example by 
identifying which indexes to follow first if there is a choice to be 
made. 
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stored under each index that discriminates it from 
other cases. This may easily lead to an explosive 
growth of indices with increased number of cases. 
Most systems using this indexing scheme therefore 
put some limits to the choice of indices for the cases. 
In CYRUS, for example, only a small vocabulary of 
indices is permitted. 

 
 

norms: The norms part of a generalized
episode contain abstract general
information that characterize the
cases organized below it
------------------------------

indices:

index1

value1

case1

index2

value2

index3

value3 value4

case3

GENERALIZED EPISODE 2

norms:       Norms  of cases 1, 2, 4
                ---------------------- 

indices:
index4

value5

case2

index5

value6

case4

GENERALIZED EPISODE 1

index1

value1

case1

 
Fig.  3: Structure of cases and generalized episodes. 
 
 
CASEY stores a large amount of information in its 

cases. In addition to all observed features, it retains 
the causal explanation for the diagnosis found, as well 
as the list of states in the heart failure model for 
which there was evidence in the patient. These states, 
referred to as generalized causal states,  are also the 
primary indices to the cases.  

The primary role of a generalized episode is as an 
indexing structure for matching and retrieval of cases. 
The dynamic properties of this memory organization, 
however, may also be viewed as an attempt to build a 
memory structure which integrates knowledge from 
specific episodes with knowledge generalized from 
the same episodes. It is therefore claimed that this 
knowledge organization structure is suitable for 
learning generalized knowledge as well as case 
specific knowledge, and that it is a plausible - 
although simplified - model of human reasoning and 
learning.  

 
4.2. The category & exemplar model 

The PROTOS system, built by Ray Bareiss and 
Bruce Porter [9,49], proposes an alternative way to 
organize cases in a case memory. Cases are also 
referred to as exemplars. The psychological and 
philosophical basis of this method is the view that 
'real world', natural concepts should be defined 
extensionally.  Further, different features are assigned 
different importances in describing a case's 
membership to a category. Any attempt to generalize 
a set of cases should - if attempted at all - be done 
very cautiously. This fundamental view of concept 
representation forms the basis for this memory model.   
The case memory  is embedded in a network structure 
of categories, semantic relations, cases, and index 
pointers. Each case is associated with a category. An 
index may point to a case or a category. The indices 
are of three kinds: Feature links pointing from 
problem descriptors (features) to cases or categories 
(called remindings), case links pointing from 
categories to its associated cases (called exemplar 
links), and difference links pointing from cases to the 
neighbour cases that only differs in one or a small 
number of features. A feature is generally described 
by a name and a value. A category's exemplars are 
sorted according to their degree of prototypicality in 
the category.   

Fig. 4 illustrates a part of this memory structure, 
i.e. the linking of features and cases (exemplars) to 
categories. The unnamed indices are remindings from 
features to a category. 

Within this memory organization, the categories 
are inter-linked within a semantic network, which 
also contains the features and intermediate states (e.g. 
subclasses of goal concepts) referred to by other 
terms. This network represents a background of 
general domain knowledge, which enables explana-
tory support to some of the CBR tasks. For example, 
a core mechanism of case matching is a method called 
'knowledge-based pattern matching'.  Finding a case 
in the case base that matches an input description is 
done by combining the input features of a problem 
case into a pointer to the case or category that shares 
most of the features. If a reminding points directly to 
a category, the links to its most prototypical cases are 
traversed, and these cases are returned.  

As indicated above, general domain knowledge is 
used to enable matching of features that are 
semantically similar. A new case is stored by 
searching for a matching case, and by establishing the 
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appropriate feature indices. If a case is found with 
only minor differences to the input case, the new case 
may not be retained or the two cases may be merged 

by following taxonomic links in the semantic 
network. 

 

Feature-1 Feature-2 Feature-3 Feature-4 Feature-5

Category-1

Exemplar-1 Exemplar-2

strongly prototypical
 exemplar

weakly prototypical 
exemplar

difference (feature-1 feature-4)

difference (feature-2)

 
 

 Fig.  4: The Structure of Categories, Features and Exemplars 
 

5. Case Retrieval  

The Retrieve task starts with a (partial) problem 
description, and ends when a best matching previous 
case has been found. Its subtasks are referred to as 
Identify Features, Initially Match, Search, and Select, 
executed in that order.  The identification task basi-
cally comes up with a set of relevant problem 
descriptors, the goal of the matching task is to return a 
set of cases that are sufficiently similar to the new 
case - given a similarity threshold of some kind, and 
the selection task works on this set of cases and 
chooses the best match (or at least a first case to try 
out). 

While some case-based approaches retrieve a 
previous case largely based on superficial, syntactical 
similarities among problem descriptors (e.g. the 
CYRUS system [33], ARC [46], and PATDEX-1 [50] 
systems), some approaches attempt to retrieve cases 
based on features that have deeper, semantic 
similarities (e.g. the PROTOS [9], CASEY [38], 
GREBE [12], CREEK [3], and MMA [47] systems). 
Ongoing work in the FABEL project, aimed to 
develop a decision support system for architects, 
explores various methods for combined reasoning and 
mutual support of different knowledge types [21]. In 
order to match cases based on semantic similarities 
and relative importance of features, an extensive body 
of general domain knowledge is needed to produce an 
explanation of why two cases match and how strong 

the match is. Syntactic similarity assessment - 
sometimes referred to as a "knowledge-poor" 
approach - has its advantage in domains where 
general domain knowledge is very difficult or 
impossible to acquire. On the other hand, 
semantically oriented approaches - referred to as 
"knowledge-intensive"6 - are able to use the contex-
tual meaning of a problem description in its matching, 
for domains where general domain knowledge is 
available.  

A question that should be asked when deciding on 
a retrieval strategy is the purpose of the retrieval task. 
If the purpose is to retrieve a case which is to be 
adapted for reuse, this can be accounted for in the re-
trieval method. Approaches to 'retrieval for 
adaptation' have for example been suggested for 
retrieval of cases for design problem solving [15], and 
for analogy reasoning [17,45]. 

 
5.1. Identify Feature 

To identify a problem may involve simply noticing 
its input descriptors, but often - and particularly for 
knowledge-intensive methods - a more elaborate 

                                                        
6Note that syntactic oriented methods may also contain a lot 

of general domain knowledge, implicit in their matching methods. 
The distinction between knowledge-poor and knowledge-
intensive is therefore related to explicitly represented domain 
knowledge. Further, it refers to generalized domain knowledge, 
since cases also contain explicit knowledge, but this is specialized 
(specific) domain knowledge. 



 

 

approach is taken, in which an attempt is made to 
'understand' the problem within its context. Unknown 
descriptors may be disregarded or requested to be 
explained by the user. In PROTOS, for example, if an 
input feature is unknown to the system, the user is 
asked to supply an explanation that links the feature 
into the existing semantic network (category 
structure). To understand a problem involves filtering 
out noisy problem descriptors, to infer other relevant 
problem features, to check whether the feature values 
make sense within the context, to generate 
expectations of other features, etc. Other descriptors 
than those given as input, may be inferred by using a 
general knowledge model, or by retrieving a similar 
problem description from the case base and use 
features of that case as expected features. Checking of 
expectations may be done within the knowledge 
model (cases and general knowledge), or by asking 
the user.  

 
5.2. Initially Match 

The task of finding a good match is typically split 
into two subtasks: An initial matching process which 
retrieves a set of plausible candidates, and a more 
elaborate process of selecting the best one among 
these. The latter is the Select task, described below. 
Finding a set of matching cases is done by using the 
problem descriptors (input features) as indexes to the 
case memory in a direct or indirect way. There are in 
principle three ways of retrieving a case or a set of 
cases: By following direct index pointers from 
problem features, by searching an index structure, or 
by searching in a model of general domain 
knowledge. PATDEX implements the first strategy 
for its diagnostic reasoning, and the second for test 
selection. A domain-dependent, but global similarity 
metric is used to assess similarity based on surface 
match. Dynamic memory based systems takes the 
second approach, but general domain knowledge may 
be used in combination with search in the discrimina-
tion network. PROTOS and CREEK combines one 
and three, since direct pointers are used to 
hypothesize a candidate set which in turn is justified 
as plausible matches by use of general knowledge. 

Cases may be retrieved solely from input features, 
or also from features inferred from the input. Cases 
that match all input features are, of course, good 
candidates for matching, but  - depending on the 
strategy - cases that match a given fraction of the 
problem features (input or inferred) may also be re-
trieved. PATDEX uses a global similarity metric, 

with several parameters that are set as part of the 
domain analysis. Some tests for relevance of a 
retrieved case is often executed, particularly if cases 
are retrieved on the basis of a subset of features. For 
example, a simple relevance test may be to check if a 
retrieved solution conforms with the expected 
solution type of the new problem. A way to assess the 
degree of similarity is needed, and several 'similarity 
metrics' have been proposed, based on surface 
similarities of problem and case features.  

Similarity assessment may also be more 
knowledge-intensive, for example by trying to 
understand the problem more deeply, and using the 
goals, constraints, etc. from this elaboration process 
to guide the matching [3]. Another option is to weigh 
the problem descriptors according to their importance 
for characterizing the problem, during the learning 
phase. In PROTOS, for example, each feature in a 
stored case has assigned to it a degree of importance 
for the solution of the case. A similar mechanism is 
adopted by CREEK, which stores both the predictive 
strength (discriminatory value) of a feature with 
respect to the set of cases, as well as a feature's 
criticality, i.e. what influence the lack of a feature has 
on the case solution. 

 
5.3. Select 

From the set of similar cases, a best match is 
chosen. This may have been done during the initial 
match process, but more often a set of cases are 
returned from that task. The best matching case is 
usually determined by evaluating the degree of initial 
match more closely. This is done by an attempt to 
generate explanations to justify non-identical features, 
based on the knowledge in the semantic network. If a 
match turns out not to be strong enough, an attempt to 
find a better match by following difference links to 
closely related cases is made. This subtask is usually 
a more elaborate one than the retrieval task, although 
the distinction between retrieval and elaborate 
matching is not distinct in all systems. The selection 
process typically generates consequences and expec-
tations from each retrieved case, and attempts to 
evaluate consequences and justify expectations. This 
may be done by using the system's own model of 
general domain knowledge, or by asking the user for 
confirmation and additional information. The cases 
are eventually ranked according to some metric or 
ranking criteria. Knowledge-intensive selection 
methods typically generate explanations that support 
this ranking process, and the case that has the 



 

 

strongest explanation for being similar to the new 
problem is chosen. Other properties of a case that are 
considered in some CBR systems include relative 
importance and discriminatory strengths of features, 
prototypicality of a case within its assigned class, and 
difference links to related cases. 

6. Case Reuse  

The reuse of the retrieved case solution in the 
context of the new case focuses on two aspects: (a) 
the differences among the past and the current case 
and (b) what part of retrieved case can be transferred 
to the new case. The possible subtasks of Reuse are 
Copy and Adapt. 

 
6.1. Copy 

In simple classification tasks the differences are 
abstracted away (they are considered non relevant 
while similarities are relevant) and the solution class 
of the retrieved case is transferred to the new case as 
its solution class. This is a trivial type of reuse. 
However, other systems have to take into account 
differences in (a) and thus the reused part (b) cannot 
be directly transferred to the new case but requires an 
adaptation process that takes into account those 
differences. 

 
6.2. Adapt 

There are two main ways to reuse past cases7: (1) 
reuse the past case solution (transformational reuse), 
and (2) reuse the past method that constructed the 
solution (derivational reuse). In transformational 
reuse the past case solution is not directly a solution 
for the new case but there exists some knowledge in 
the form of transformational operators {T} such that 
applied to the old solution they transform it into a 
solution for the new case. A way to organize these T 
operators is to index them around the differences 
detected among the retrieved and current cases. An 
example of this is CASEY, where a new causal 
explanation is built from the old causal explanations 
by rules with condition part indexing differences and 
with a transformational operator T at the action part 
of the rule. Transformational reuse does not look how 
a problem is solved but focuses on the equivalence of 

                                                        
7We here adapt the distinction between transformational and 

derivational analogy, put forth in [16]. 

solutions, and this is one requires a strong domain-
dependent model in the form of transformational 
operators {T} plus a control regime to organize the 
operators application. 

Derivational reuse looks at how the problem was 
solved in the retrieved case. The retrieved case holds 
information about the method used for solving the 
retrieved problem including a justification of the op-
erators used, subgoals considered, alternatives 
generated, failed search paths, etc. Derivational reuse 
then re-instantiates the retrieved method to the new 
case and "replays" the old plan into the new context 
(usually general problem solving systems are seen 
here as planning systems). During the replay 
successful alternatives, operators, and paths will be 
explored first while filed paths will be avoided; new 
subgoals are pursued based on the old ones and old 
sub-plans can be recursively retrieved for them. An 
example of derivational reuse is the Analogy/Prodigy 
system [70] that reuses past plans guided by 
commonalties of goals and initial situations, and 
resumes a means-ends planning regime if the 
retrieved plan fails or is not found. 

7. Case Revision  

When a case solution generated by the reuse phase 
is not correct, an opportunity for learning from failure 
arises. This phase is called case revision and consists 
of two tasks: (1) evaluate the case solution generated 
by reuse. If successful, learn from the success (case 
retainment, see next section), (2) otherwise repair the 
case solution using domain-specific knowledge or 
user input.  

 
7.1. Evaluate solution 

The evaluation task takes the result from applying 
the solution in the real environment (asking a teacher 
or performing the task in the real world). This is 
usually a step outside the CBR system, since it - at 
least for a system in normal operation - involves the 
application of a suggested solution to the real 
problem. The results from applying the solution may 
take some time to appear, depending on the type of 
application. In a medical decision support system, the 
success or failure of a treatment may take from a few 
hours up to several months. The case may still be 
learned, and be available in the case base in the 
intermediate period, but it has to be marked as a non-
evaluated case. A solution may also be applied to a 



 

 

simulation program that is able to generate a correct 
solution. This is used in CHEF, where a solution (i.e. 
a cooking recipe) is applied to an internal model 
assumed to be strong enough to give the necessary 
feedback for solution repair.  

 
7.2. Repair fault 

Case repair involves detecting the errors of the 
current solution and retrieving or generating 
explanations for them. The best example is the CHEF 
system, where causal knowledge is used to generate 
an explanation of why certain goals of the solution 
plan were not achieved. CHEF learns the general 
situations that will cause the failures using an 
explanation-based learning technique. This is 
included into a failure memory that is used in the 
reuse phase to predict possible shortcomings of plans. 
This form of learning moves detection of errors in a 
pot hoc fashion to the elaboration plan phase were 
errors can be predicted, handled and avoided. A 
second step of the revision phase uses the failure 
explanations to modify the solution in such a way that 
failures do not occur. For instance, the failed plan in 
the CHEF system is modified by a repair module that 
adds steps to the plan that will assure that the causes 
of the errors will not occur. The repair module 
possesses general causal knowledge and domain 
knowledge about how to disable or compensate 
causes of errors in the domain. The revised plan can 
then be retained directly (if the revision phase assures 
its correctness) or it can be evaluated and repaired 
again. 

8. Case Retainment - Learning  

This is the process of incorporating what is useful 
to retain from the new problem solving episode into 
the existing knowledge. The learning from success or 
failure of the proposed solution is triggered by the 
outcome of the evaluation and possible repair. It 
involves selecting which information from the case to 
retain, in what form to retain it, how to index the case 
for later retrieval from similar problems, and how to 
integrate the new case in the memory structure.  

 
8.1. Extract 

In CBR the case base is updated no matter how the 
problem was solved. If it was solved by use of a 
previous case, a new case may be built or the old case 

may be generalized to subsume the present case as 
well. If the problem was solved by other methods, in-
cluding asking the user, an entirely new case will 
have to be constructed. In any case, a decision needs 
to be made about what to use as the source of 
learning. Relevant problem descriptors and problem 
solutions are obvious candidates. But an explanation 
or another form of justification of why a solution is a 
solution to the problem may also be marked for 
inclusion in a new case. In CASEY and CREEK, for 
example, explanations are included in retained cases, 
and reused in later modification of the solution. 
CASEY uses the previous explanation structure to 
search for other states in the diagnostic model that 
explains the input data of the new case, and to look 
for causes of these states as answers to the new 
problem. This focuses and speeds up the explanation 
process, compared to a search in the entire domain 
model. The last type of structure that may be 
extracted for learning is the problem solving method, 
i.e. the strategic reasoning path, making the system 
suitable for derivational reuse.  

Failures, i.e. information from the Revise task, 
may also be extracted and retained, either as separate 
failure cases or within total-problem cases. When a 
failure is encountered, the system can then get a 
reminding to a previous similar failure, and use the 
failure case to improve its understanding of - and 
correct - the present failure. 

 
8.2. Index 

The 'indexing problem' is a central and much 
focused problem in case-based reasoning. It amounts 
to deciding what type of indexes to use for future 
retrieval, and how to structure the search space of 
indexes. Direct indexes, as previously mentioned, 
skip the latter step, but there is still the problem of 
identifying what type of indexes to use. This is 
actually a knowledge acquisition problem, and should 
be analyzed as part of the domain knowledge analysis 
and modelling step. A trivial solution to the problem 
is of course to use all input features as indices. This is 
the approach of syntax-based methods within 
instance-based and memory-based reasoning. In the 
memory-based method of CBR-Talk [63], for 
example, relevant features are determined by 
matching, in parallel, all cases in the case-base, and 
filtering out features that belong to cases with few 
features in common with the problem case. 

In CASEY, a two-step indexing method is used. 
Primary index features are - as referred to in the 



 

 

section on representation - general causal states in the 
heart failure model that are part of the explanation of 
the case. When a new problem enters, the features are 
propagated in the heart failure model, and the states 
that explain the features are used as indices to the 
case memory. The observed features themselves are 
used as secondary features only. 

 
8.3. Integrate 

This is the final step of updating the knowledge 
base with new case knowledge. If no new case and 
index set has been constructed, it is the main step of 
Retain. By modifying the indexing of existing cases, 
CBR systems learn to become better similarity 
assessors. The tuning of existing indexes is an 
important part of CBR learning. Index strengths or 
importances for a particular case or solution are 
adjusted due to the success or failure of using the case 
to solve the input problem. For features that have 
been judged relevant for retrieving a successful case, 
the association with the case is strengthened, while it 
is weakened for features that lead to unsuccessful 
cases being retrieved. In this way, the index structure 
has a role of tuning and adapting the case memory to 
its use. PATDEX has a special way to learn feature 
relevance: A relevance matrix links possible features 
to the diagnosis for which they are relevant, and 
assign a weight to each such link. The weights are 
updated, based on feedback of success or failure, by a 
connectionist method.  

In knowledge-intensive approaches to CBR, 
learning may also take place within the general 
conceptual knowledge model, for example by other 
machine learning methods (see next section) or 
through interaction with the user. Thus, with a proper 
interface to the user (whether a competent end user or 
an expert) a system may incrementally extend and 
refine its general knowledge model, as well as its 
memory of past cases, in the normal course of 
problem solving. This is an inherent method in the 
PROTOS system, for example. All general 
knowledge in PROTOS is assumed to be acquired in 
such a bottom-up interaction with a competent user. 

The case just learned may finally be tested by re-
entering the initial problem and see whether the 
system behaves as wanted. 

9. Integrated approaches  

Most CBR systems make use of general domain 

knowledge in addition to knowledge represented by 
cases. Representation and use of that domain 
knowledge involves integration of the case-based 
method with other methods and representations of 
problem solving, for instance rule-based systems or 
deep models like causal reasoning. The overall 
architecture of the CBR system  has to determine  the 
interactions and control regime between the CBR 
method and the other components. Note that the type 
of integration we address here involves case based 
reasoning as a core part of the target system's 
reasoning method, and does not include case-oriented 
approaches for acquiring general domain knowledge 
(e.g. [74]). For instance, the CASEY system 
integrates a model-based causal reasoning program to 
diagnose heart diseases. When the case-based method 
fails to provide a correct solution CASEY executes 
the model-based method to solve the problem and 
stores the solution as a new case for future use. Since 
the model-based method is complex and slow, the 
case-based method in CASEY is essentially a way to 
achieve speed-up learning. The integration of model-
based reasoning is also important for the case-based 
method itself: the causal model of the disease of a 
case is what is retrieved and reused in CASEY. 

An example of integrating rules and cases is the 
BOLERO system [40]. BOLERO is a meta-level 
architecture where the base-level is composed of rules 
embodying knowledge to diagnose the plausible 
pneumonias of a patient, while the meta-level is a  
case-based planner that, at  every moment, is  able to  
dictate which  diagnoses are  worthwhile to consider. 
Thus in BOLERO the rule-based level contains 
domain knowledge (how to deduce plausible 
diagnosis from patient facts) while the meta-level 
contains strategic knowledge (it plans, from all 
possible goals, which are likely to be successfully 
achieved). The case-based planner is therefore used to 
control the space searched by the rule-based level, 
achieving a form of speed-up learning. The control 
regime between the two components is interesting: 
the control passes to the meta-level whenever some 
new information is known at the base level, assuring 
that the system is dynamically able to generate a more 
appropriate strategic plan. This control regime in the 
meta-level architecture assures that the case-based 
planner is capable of reactive behaviour, i.e. of 
modifying plans reacting to situation changes. Also 
the clear separation of rule-based and case-based 
methods in two different levels of computation is 
important: it clarifies their distinction and their 
interaction. 



 

 

The integration of CBR with other reasoning 
paradigms is closely related to the general issue of 
architectures for unified problem solving and 
learning. These approach is a current trend in machine 
learning with architectures such as Soar, Theo, or 
Prodigy. CBR as such is a form of combining prob-
lem solving (through retrieval and reuse) and learning 
(through retainment). However, as we have seen, 
other forms of representation and reasoning are 
usually integrated into a CBR system and thus the 
general issue is an important dimension into CBR re-
search. In the CREEK architecture, the cases, 
heuristic rules, and deep models are integrated into a 
unified knowledge structure. The main role of the 
general knowledge is to provide explanatory support 
to the case-based processes [3], rules or deep models 
may also be used to solve problems on their own if 
the case-based method fails. Usually the domain 
knowledge used in a CBR system is acquired through 
knowledge acquisition in the normal way for 
knowledge-based systems. Another option would be 
to also learn that knowledge from the cases. In this 
situation it can be learnt in a case-based way or by 
induction. This line of work is currently being 
developed in Europe by systems like the Massive 
Memory Architecture and INRECA [41]. These 
systems are closely related to the multi-strategy 
learning systems [42]: the issues of integrating 
different problem solving and learning methods are 
essential to them. 

The Massive Memory Architecture (MMA) [47] is 
an integrated architecture for learning and problem 
solving based on reuse of case experiences retained in 
the systems memory. A goal of MMA is 
understanding and implementing the relationship 
between learning and problem solving into a 
reflective or introspective framework: the system is 
able to inspect its own past behaviour in order to learn 
how to change its structure so as to improve is future 
performance. Case-based reasoning methods are 
implemented by retrieval methods (to retrieve past 
cases), a language of preferences (to select the best 
case) and a form of derivational analogy (to reuse the 
retrieved method into the current problem). A 
problem in the MMA does not use one CBR method, 
since several CBR methods can be programmed for 
different subgoals by means of specific retrieval 
methods and domain-dependent preferences. Learning 
in MMA is viewed as a form of introspective 
inference, where the reasoning is not about a domain 
but about the past behaviour of the system and about 
ways to modify and improve this behaviour. This 

view supports integration of case-based learning as 
well as of other forms of learning from examples, like 
inductive methods, which are also integrated into the 
MMA and combined with case-based methods. 

10. Example applications and tools 

As a relatively young field, CBR cannot yet brag 
about a lot of fielded applications. But there are some. 
We briefly summarize two of these systems, to 
illustrate how CBR methods can successfully realize 
knowledge-based decision support systems. 

 
10.1. Two Fielded Applications 

At Lockheed, Palo Alto, the first fielded CBR 
system was developed. The problem domain is 
optimization of autoclave loading for heat treatment 
of composite materials [26]. The autoclave is a large 
convection oven, where airplane parts are treated in 
order to get the right properties. Different material 
types need different heating and cooling procedures, 
and the task is to load the autoclave for optimized 
throughput, i.e. to select the parts that can be treated 
together, and distribute them in the oven so that their 
required heating profiles are taken care of. There are 
always more parts to be cured than the autoclave can 
take in one load. The knowledge needed to perform 
this task reasonably well used to reside in the head of 
a just a few experienced people. There is no theory 
and very few generally applicable schemes for doing 
this job, so to build up experience in the form of 
previously successful and unsuccessful situations is 
important. The motivation for developing this 
application was to be able to remember the relevant 
earlier situations. Further, a decision support system 
would enable other people than the experts to do the 
job, and to help training new personnel. The develop-
ment of the system started in 1987, and it has been in 
regular use since the fall 1990. The results so far are 
very positive. The current system handles the 
configuration of one loading operation in isolation, 
and an extended system to handle the sequencing of 
several loads is under testing. The development 
strategy of the application has been to hold a low-risk 
profile, and to include more advanced functionalities 
and solutions as experience with the system has been 
gained over some time. 

The second application has been developed at 
General Dynamics, Electric Boat Division [13]. 
During construction of ships, a frequently re-



 

 

occurring problem is the selection of the most 
appropriate mechanical equipment, and to fit it to its 
use. Most of these problems can be handled by fairly 
standard procedures, but some problems are harder 
and occur less frequently. These type of problems - 
referred to as "non-conformances" - also repeat over 
time, and because regular procedures are missing, 
they consume a lot of resources to get solved . 
General Dynamics wanted to see whether a 
knowledge-based decision support tool could reduce 
the cost of these problems. The application domain 
chosen was the selection and adjustment of valves for 
on-board pipeline systems. The development of the 
first system started in 1986, using a rule-based 
systems approach. The testing of the system on real 
problems initially gave positive results, but problems 
of brittleness and knowledge maintenance soon 
became apparent. In 1988 a feasibility study was 
made of the use of case-based reasoning methods 
instead of rules, and a prototype CBR system was 
developed. The tests gave optimistic results, and an 
operational system was fielded in 1990. The rule-base 
was taken advantage of in structuring the case 
knowledge and filling the initial case base. IN the fall 
of 1991 the system was continually used in three out 
of four departments involved with mechanical 
construction. A quantitative estimate of cost 
reductions has been made: The rule-based system 
took 5 man-years to develop, and the same for the 
CBR system (2 man-years of studies and 
experimental development and 3 man-years for the 
prototype and operational system). This amounts to 
$750.000 in total costs. In the period December 90 - 
September 91 20.000 non-conformances were 
handled. The cost reduction, compared to previous 
costs of manual procedures, was about 10%, which 
amounts to a saving of $240.000 in less than one year. 

There are many any other applications in test use 
or more or less regular use. A rapidly growing 
application type is "help desk systems" [36,58], where 
basically case-based indexing and retrieval methods 
are used to retrieve cases, which then are viewed as 
information chunks for the user, instead of sources of 
knowledge for reasoning8. Such a system can also be 
a first step towards a more full-fledged CBR system.  

 

                                                        
8A gradual transition from such a system, starting with some 

help desk and information filtering [74] functions, and moving to 
an advice-giving case-based decision support tool, is the approach 
taken in a system currently being specified for the Norwegian oil 
industry [43].  

10.2. Tools 

Several commercial companies offer shells for 
building CBR systems. Just as for rule-based systems 
shells, they enable you to quickly develop 
applications, but at the expense of flexibility of 
representation, reasoning approach and learning 
methods. In [25] Paul Harmon reviewed four such 
shells: ReMind from Cognitive Systems Inc., CBR 
Express/ART-IM from Inference Corporation, Esteem 
from Esteem Software Inc., and Induce-it (later 
renamed to CasePower) from Inductive Solutions, 
Inc. The first three of these were reviewed more 
thoroughly by Thomas Schult for the German AI 
journal [56]. The example of CBR Express and ART-
IM is typical, since many vendors offer CBR 
extensions to an existing tool. On the European scene 
Acknosoft in Paris offers the shell KATE-CBR as 
part of their CaseCraft Toolbox, Isoft, also in Paris, 
has a shell called ReCall. TechInno in Kaiserslautern 
has S3-Case, a PATDEX-derived tool that is part of 
their S3 environment for technical systems mainte-
nance.  

As an example of functionality, the ReMind shell 
offers an interactive environment for acquisition of 
cases, domain vocabulary, indexes and prototypes. 
The user may define hierarchical relations among at-
tributes and a similarity measure based on them. 
Indexing is done inductively by building a decision 
tree and allowing the user to graphically edit the 
importance of attributes. Several retrieval methods are 
supported: (1) inductive retrieval matching the most 
specific prototype in a prototype hierarchy, (2) 
nearest neighbour retrieval, and (3) SQL-like template 
retrieval. Case adaptation is based on formulas that 
adjust values based on retrieved vs. new case 
differences. ReMind also has the capability of 
representing causal relationships using a qualitative 
model. The first commercial products appeared in 
1991 including Help-Desk systems, technical 
diagnosis, classification and prediction, control and 
monitoring, planning, and design applications. 
ReMind is a trademark of Cognitive Systems Inc. and 
was developed with the DARPA support. 

ReCall is a CBR system trademark of ISoft, a 
Paris based AI company, and applications include 
help desk systems, fault diagnosis, bank loan analysis, 
control and monitoring. Retrieval methods are a 
combination of methods (1) and (2) in ReMind, but 
offer standard adaptation mechanisms such as vote 
and analogy, and a library of adaptation methods. 

The KATE-CBR tool, named CaseWork, 



 

 

integrates an instance-based CBR approach within a 
tool for inductive learning of, and problem solving 
from, decision trees. The inductive and case-based 
methods can be used separately, or integrated into a 
single combined method. There are editor facilities to 
graphically build parts of the case/index structure, and 
to generate user dialogues. The tool has incorporated 
initial results on integration of case-based and 
inductive methods from the INRECA project [41]. 

Some academic CBR tools are freely available, 
e.g. by anonymous ftp, or via contacting the 
developers.9 

11. Conclusions and Future trends 

Summarizing the paper, we can say that case-
based reasoning (CBR) puts forward a paradigmatic 
way to attack AI issues, namely problem solving, 
learning, usage of general and specific knowledge, 
combining different reasoning methods, etc. In 
particular we have seen that CBR emphasizes 
problem solving and learning as two sides of the same 
coin: problem solving uses the results of past learning 
episodes while problem solving provides the 
backbone of the experience from which learning 
advances. The current state of the art in Europe 
regarding CBR is characterized by a strong influence 
of the USA ideas and CBR systems, although Europe 
is catching up and provides a somewhat different 
approach to CBR, particularly in its many activities 
related to integration of CBR and other approaches 
and by its movement toward the development of 
application-oriented CBR systems. 

The development trends of CBR methods can be 
grouped around four main topics: Integration with 
other learning methods, integration with other 
reasoning components, incorporation into massive 
parallel processing, and method advances by focusing 
on new cognitive aspects. The first trend, integration 
of other learning methods into CBR, forms part of the 
current trend in ML research toward multi-strategy 
learning systems. This research aims at achieving an 
integration of different learning methods (for instance 
case-based learning and induction as is done in the 
MMA and INRECA systems) into a coherent 
framework, where each learning method fulfils a 
specific and distinct role in the system. The second 

                                                        
9 Protos, for example, is available from the University of 

Texas, and code for implementing a simple version of dynamic 
memory, as described in [51], is available from the Institute of 
Learning Sciences at Northwestern University. 

trend, integration of several reasoning methods aims 
at using the different sources of knowledge in a more 
thorough, principled way, like what is done in the 
CASEY system with the use of causal knowledge. 
This trend emphasizes the increasing importance of 
knowledge acquisition issues and techniques in the 
development of knowledge-intensive CBR systems, 
and the European Workshop on CBR showed a strong 
European commitment towards the utilization of 
knowledge level modelling in CBR systems design. 

The massive memory parallelism trend applies 
case-based reasoning to domains suitable for shallow, 
instance-based retrieval methods on a very large 
amount of data. This direction may also benefit from 
integration with neural network methods, as several 
Japanese projects currently are investigating [32].  By 
the fourth trend, method advances from focusing on 
the cognitive aspects, what we particularly have in 
mind is the follow-up of work initiated on creativity 
(e.g. [55]) as a new focus for CBR methods. It is not 
just an 'application type', but a way to view CBR in 
general, which may have significant impact on our 
methods. 

The trends of CBR applications are clearly that we 
initially will see a lot of help desk applications 
around. This type of systems may open up for a more 
general coupling of CBR - and AI in general - to in-
formation systems. The use of cases for human 
browsing and decision making, is also likely to lead 
to increased interest in intelligent computer-aided 
learning, training, and teaching. The strong role of 
user interaction, of flexible user control, and the drive 
towards total interactiveness of systems (of 
'situatedness', if you like) favours a case-based 
approach to intelligent computer assistance, since 
CBR systems are able to continually learn from, and 
evolve through, the capturing and retainment of past 
experiences. 

Case-based reasoning has blown a fresh wind and 
a well justified degree of optimism into AI in general 
and knowledge based decision support systems in 
particular. The growing amount of ongoing CBR 
research - within an AI community that has learned 
from its previous experiences - has the potential of 
leading to significant breakthroughs of AI methods 
and applications. 
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