
 Published in: AI Communications, Vol. 7 Nr. 1, March 1994, pp 39-59

1

Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System
Approaches

Agnar Aamodt
University of Trondheim, College of Arts and Science,
Department of Informatics, N-7055 Dragvoll, Norway.
Phone: +47 73 591838; fax: +47 73 591733;
e-mail: agnar@ifi.unit.no

Enric Plaza
Institut d’Investigació en Intel·ligència Artificial, CSIC,
Camí de Santa Bàrbara,17300 Blanes, Catalonia, Spain.
e-mail: plaza@ceab.es

Case-based reasoning is a recent approach to problem

solving and learning that has got a lot of attention over the
last few years. Originating in the US, the basic idea and
underlying theories have spread to other continents, and
we are now within a period of highly active research in
case-based reasoning in Europe, as well. This paper gives
an overview of the foundational issues related to case-
based reasoning, describes some of the leading methodo-
logical approaches within the field, and exemplifies the
current state through pointers to some systems. Initially, a
general framework is defined, to which the subsequent
descriptions and discussions will refer. The framework is
influenced by recent methodologies for knowledge level
descriptions of intelligent systems. The methods for case
retrieval, reuse, solution testing, and learning are
summarized, and their actual realization is discussed in the
light of a few example systems that represent different
CBR approaches. We also discuss the role of case-based
methods as one type of reasoning and learning method
within an integrated system architecture.

1. Introduction

Over the last few years, case-based reasoning
(CBR) has grown from a rather specific and isolated
research area to a field of widespread interest.
Activities are rapidly growing - as seen by the in-
creased rate of research papers, availability of
commercial products, and also reports on
applications in regular use. In Europe, researchers
and application developers recently met at the First
European Workshop on Case-based reasoning, which

took place in Germany, November 1993. It gathered
around 120 people, and more than 80 papers on
scientific and application-oriented research were
presented.

1.1. Background and motivation.

Case-based reasoning is a problem solving para-
digm that in many respects is fundamentally different
from other major AI approaches. Instead of relying
solely on general knowledge of a problem domain, or
making associations along generalized relationships
between problem descriptors and conclusions, CBR
is able to utilize the specific knowledge of previously
experienced, concrete problem situations (cases). A
new problem is solved by finding a similar past case,
and reusing it in the new problem situation. A second
important difference is that CBR also is an approach
to incremental, sustained learning, since a new
experience is retained each time a problem has been
solved, making it immediately available for future
problems.

This paper presents an overview of the field, in
terms of its underlying foundations, its current state-
of-the-art, and future trends. The description of CBR
principles, methods, and systems is made within a
general analytic scheme. Other authors have recently
given overviews of case-based reasoning (Ch. 1 in
[51], Introductory section of [18], [36,61]). Our
overview differs in four major ways from these
accounts: First, we initially specify a general
descriptive framework to which the subsequent
method descriptions will refer. Second, we put a
strong emphasis on the methodological issues of
case-based reasoning, and less on a discussion of
suitable application types and on the advantages of
CBR over rule-based systems. (This has been taken
very well care of in the documents cited above).
Third, we strive to maintain a neutral view of
existing CBR approaches, unbiased by a particular
'school'. And finally, we include results from the
European CBR arena, which unfortunately have been
missing in American CBR reports. (Our own experi-

2

ence from active CBR research over the last 5 years
started out from different backgrounds and moti-
vations, and we may have developed different views
to some of the major issues involved. We will give
examples of our respective priorities and concerns
related to CBR research as part of the discussion
about future trends towards the end of the paper.)

What is case-based reasoning? Basically: To solve
a new problem by remembering a previous similar
situation and by reusing information and knowledge
of that situation. Let us illustrate this by looking at
some typical problem solving situations:

- A physician - after having examined a particular

patient in his office - gets a reminding to a patient
that he treated two weeks ago. Assuming that the
reminding was caused by a similarity of important
symptoms (and not the patient's hair colour, say),
the physician uses the diagnosis and treatment of
the previous patient to determine the disease and
treatment for the patient in front of him.

- A drilling engineer, who has experienced two
dramatic blowout situations, is quickly reminded
of one of these situations (or both) when the
combination of critical measurements matches
those of a blow out case. In particular, he may get
a reminding to a mistake he made during a
previous blowout, and use this to avoid repeating
the error once again.

- A financial consultant working on a difficult credit
decision task uses a reminding to a previous case,
which involved a company in similar trouble as
the current one, to recommend that the loan
application should be refused.

1.2. Case-based problem solving.

As the above examples indicate, reasoning by re-
using past cases is a powerful and frequently applied
way to solve problems for humans. This claim is also
supported by results from cognitive psychology
research. Part of the foundation for the case-based
approach is its psychological plausibility. Several
studies have given empirical evidence for the
dominating role of specific, previously experienced
situations (what we call cases) in human problem
solving (e.g. [53]). Schank [54] developed a theory of
learning and reminding based on retaining of
experience in a dynamic, evolving memory1 structure.

1 The term ‘memory’ is often used to refer to the storage

structure that holds the existing cases, i.e. to the case base. A

Anderson [6] has shown that people use past cases as
models when learning to solve problems, particularly
in early learning. Other results (e.g. by W.B. Rouse
[75]) indicate that the use of past cases is a
predominant problem solving method among experts
as well. Studies of problem solving by analogy (e.g.
[16,22]) also shows the frequent use of past experi-
ence in solving new and different problems. Case-
based reasoning and analogy are sometimes used as
synonyms (e.g. in [16]). Case-based reasoning can be
considered a form of intra-domain analogy. However,
as will be discussed later, the main body of analogical
research [14,23,30] has a different focus, namely
analogies across domains.

In CBR terminology, a case usually denotes a
problem situation. A previously experienced situa-
tion, which has been captured and learned in such a
way that it can be reused in the solving of future
problems, is referred to as a past case, previous
case, stored case, or retained case. Correspondingly, a
new case or unsolved case is the description of a new
problem to be solved. Case-based reasoning is - in
effect - a cyclic and integrated process of solving a
problem, learning from this experience, solving a new
problem, etc.

Note that the term problem solving is used here in
a wide sense, coherent with common practice within
the area of knowledge-based systems in general. This
means that problem solving is not necessarily the
finding of a concrete solution to an application
problem, it may be any problem put forth by the user.
For example, to justify or criticize a solution proposed
by the user, to interpret a problem situation, to
generate a set of possible solutions, or generate
expectations in observable data are also problem
solving situations.

1.3. Learning in Case-based Reasoning.

A very important feature of case-based reasoning
is its coupling to learning. The driving force behind
case-based methods has to a large extent come from
the machine learning community, and case-based
reasoning is also regarded a subfield of machine
learning2. Thus, the notion of case-based reasoning

memory, thus, refers to what is remembered from previous
experiences. Correspondingly, a reminding is a pointer structure
to some part of memory.

3

does not only denote a particular reasoning method,
irrespective of how the cases are acquired, it also
denotes a machine learning paradigm that enables
sustained learning by updating the case base after a
problem has been solved. Learning in CBR occurs as
a natural by-product of problem solving. When a
problem is successfully solved, the experience is
retained in order to solve similar problems in the
future. When an attempt to solve a problem fails, the
reason for the failure is identified and remembered in
order to avoid the same mistake in the future.

Case-based reasoning favours learning from ex-
perience, since it is usually easier to learn by retaining
a concrete problem solving experience than to
generalize from it. Still, effective learning in CBR
requires a well worked out set of methods in
order to extract relevant knowledge from the
experience, integrate a case into an existing knowl-
edge structure, and index the case for later matching
with similar cases.

1.4. Combining cases with other knowledge.

By examining theoretical and experimental results
from cognitive psychology, it seems clear that human
problem solving and learning in general are processes
that involve the representation and utilization of
several types of knowledge, and the combination of
several reasoning methods. If cognitive plausibility is
a guiding principle, an architecture for intelligence
where the reuse of cases is at the centre, should also
incorporate other and more general types of
knowledge in one form or another. This is an issue of
current concern in CBR research [67].

The rest of this paper is structured as follows: The
next section gives a brief historical overview
of the CBR field. This is followed by a grouping of
CBR methods into a set of characteristic types, and a
presentation of the descriptive framework which will
be used throughout the paper to discuss CBR
methods. Sections 4 to 8 discuss representation is-
sues and methods related to the four main tasks of
case-based reasoning, respectively. In section 9 we
look at CBR in relation to integrated architectures and

2The learning approach of case-based reasoning is sometimes

referred to as case-based learning. This term is sometimes also
used synonymous with example-based learning, and may
therefore point to classical induction and other generalization-
driven learning methods. Hence, we will here use the term case-
based reasoning both for the problem solving and learning part,
and explicitly state which part we talk about whenever necessary.

multi-strategy problem solving and learning. This is
followed by a short description of some fielded
applications, and a few words about CBR develop-
ment tools. The conclusion briefly summarizes the
paper, and point out some possible trends.

2. History of the CBR field

The roots of case-based reasoning in AI are found
in the works of Roger Schank on dynamic memory,
and the central role that a reminding of earlier
situations (episodes, cases) and situation patterns
(scripts, MOPs) have in problem solving and learning
[54]. Other trails into the CBR field have come from
the study of analogical reasoning [22], and - further
back - from theories of concept formation, problem
solving and experiential learning within philosophy
and psychology (e.g. [62,69,72]). For example,
Wittgenstein observed that ‘natural concepts’, i.e.,
concepts that are part of the natural world - such as
bird, orange, chair, car, etc. - are polymorphic. That
is, their instances may be categorized in a variety of
ways, and it is not possible to come up with a useful
classical definition in terms of a set of necessary and
sufficient features for such concepts. An answer to
this problem is to represent a concept extensionally,
defined by its set of instances - or cases.

The first system that might be called a case-based
reasoner was the CYRUS system, developed by Janet
Kolodner [33, 34] at Yale University (Schank's
group). CYRUS was based on Schank's dynamic
memory model and MOP theory of problem solving
and learning [54]. It was basically a question-
answering system with knowledge of the various
travels and meetings of former US Secretary of State
Cyrus Vance. The case memory model developed for
this system has later served as basis for several other
case-based reasoning systems (including
MEDIATOR [59], PERSUADER [68], CHEF [24],
JULIA [27], CASEY [38]).

Another basis for CBR, and another set of models,
was developed by Bruce Porter and his group [48] at
the University of Texas, Austin. They initially
addressed the machine learning problem of concept
learning for classification tasks. This lead to the
development of the PROTOS system [9], which
emphasized integrating general domain knowledge
and specific case knowledge into a unified repre-
sentation structure. The combination of cases with
general domain knowledge was pushed further in
GREBE [12], an application in the domain of law.
Another early significant contribution to CBR was the

4

work by Edwina Rissland and her group at the
University of Massachusetts, Amhearst. With several
law scientists in the group, they were interested in the
role of precedence reasoning in legal judgements
[52]. Cases (precedents) are here not used to produce
a single answer, but to interpret a situation in court,
and to produce and assess arguments for both parties.
This resulted in the HYPO system [10], and later the
combined case-based and rule-based system
CABARET [60]. Phyllis Koton at MIT studied the
use of case-based reasoning to optimize performance
in an existing knowledge based system, where the
domain (heart failure) was described by a deep, causal
model. This resulted in the CASEY system [38], in
which case-based and deep model-based reasoning
was combined.

In Europe, research on CBR was taken up a little
later than in the US. The CBR work seems to have
been stronger coupled to expert systems development
and knowledge acquisition research than in the US.
Among the earliest results was the work on CBR for
complex technical diagnosis within the MOLTKE
system, done by Michael Richter together with Klaus
Dieter Althoff and others at the University of
Kaiserslautern [4]. This lead to the PATDEX system
[50], with Stefan Wess as the main developer, and
later to several other systems and methods [5]. At
IIIA in Blanes, Enric Plaza and Ramon López de
Mántaras developed a case-based learning apprentice
system for medical diagnosis [46], and Beatrice
Lopez investigated the use of case-based methods for
strategy-level reasoning [39]. In Aberdeen, Derek
Sleeman's group studied the use of cases for
knowledge base refinement. An early result was the
REFINER system, developed by Sunil Sharma [57].
Another result is the IULIAN system for theory
revision by Ruediger Oehlman [44]. At the University
of Trondheim, Agnar Aamodt and colleagues at
Sintef studied the learning aspect of CBR in the
context of knowledge acquisition in general, and
knowledge maintenance in particular. For problem
solving, the combined use of cases and general
domain knowledge was focused [1]. This lead to the
development of the CREEK system and integration
framework [2], and to continued work on knowledge-
intensive case-based reasoning. On the cognitive
science side, early work was done on analogical
reasoning by Mark Keane, at Trinity College, Dublin,
[29], a group that has developed into a strong envi-
ronment for this type of CBR. In Gerhard Strube's
group at the University of Freiburg, the role of
episodic knowledge in cognitive models was

investigated in the EVENTS project [66], which lead
to the group''s current research profile of cognitive
science and CBR.

Currently, the CBR activities in the United States
as well as in Europe are spreading out (see, e.g.
[8,19,20,28], and the rapidly growing number of
papers on CBR in almost any AI journal). Germany
seems to have taken a leading position in terms of
number of active researchers, and several groups
of significant size and activity level have been
established recently. From Japan and other Asian
countries, there are also activity points, for example
in India [71]. In Japan, the interest is to a large extent
focused on the parallel computation approach to CBR
[32].

3. Fundamentals of case-based reasoning
 methods

Central tasks that all case-based reasoning meth-
ods have to deal with are to identify the current
problem situation, find a past case similar to the new
one, use that case to suggest a solution to the current
problem, evaluate the proposed solution, and update
the system by learning from this experience. How this
is done, what part of the process is focused, what type
of problems drives the methods, etc. varies
considerably, however. Below is an attempt to
classify CBR methods into types with roughly similar
properties in this respect.

3.1. Main types of CBR methods.

The CBR paradigm covers a range of different
methods for organizing, retrieving, utilizing and
indexing the knowledge retained in past cases. Cases
may be kept as concrete experiences, or a set of
similar cases may form a generalized case. Cases may
be stored as separate knowledge units, or split up into
subunits and distributed within the knowledge
structure. Cases may be indexed by a prefixed or open
vocabulary, and within a flat or hierarchical index
structure. The solution from a previous case may be
directly applied to the present problem, or modified
according to differences between the two cases. The
matching of cases, adaptation of solutions, and
learning from an experience may be guided and
supported by a deep model of general domain knowl-
edge, by more shallow and compiled knowledge, or
be based on an apparent, syntactic similarity only.
CBR methods may be purely self-contained and

5

automatic, or they may interact heavily with the user
for support and guidance of its choices. Some CBR
methods assume a rather large amount of widely dis-
tributed cases in its case base, while others are based
on a more limited set of typical ones. Past cases may
be retrieved and evaluated sequentially or in parallel.

Actually, "case-based reasoning" is just one of a
set of terms used to refer to systems of this kind. This
has lead to some confusion, given that case-based
reasoning is a term used both as a generic term for
several types of more specific approaches, as well as
for one such approach. To some extent, this can also
be said for analogy reasoning. An attempt of a
clarification, although not resolving the confusion, of
the terms related to case-based reasoning are given
below.

Exemplar-based reasoning. The term is derived
from a classification of different views to concept
definition into "the classical view", "the probabilistic
view", and "the exemplar view" (see [62]). In the
exemplar view, a concept is defined extensionally, as
the set of its exemplars. CBR methods that address
the learning of concept definitions (i.e. the problem
addressed by most of the research in machine
learning), are sometimes referred to as exemplar-
based. Examples are early papers by Kibler and Aha
[31], and Bareiss and Porter [48]. In this approach,
solving a problem is a classification task, i.e., finding
the right class for the unclassified exemplar. The class
of the most similar past case becomes the solution to
the classification problem. The set of classes
constitutes the set of possible solutions. Modification
of a solution found is therefore outside the scope of
this method.

Instance-based reasoning. This is a specialization
of exemplar-based reasoning into a highly syntactic
CBR-approach. To compensate for lack of guidance
from general background knowledge, a relatively
large number of instances are needed in order to close
in on a concept definition. The representation of the
instances is usually simple (e.g. feature vectors), since
the major focus is on studying automated learning
with no user in the loop. Instance-based reasoning
labels recent work by Kibler and Aha and colleagues
[7], and serves to distinguish their methods from more
knowledge-intensive exemplar-based approaches (e.g.
Protos' methods). Basically, this is a non-generaliza-
tion approach to the concept learning problem ad-
dressed by classical, inductive machine learning
methods.

Memory-based reasoning. This approach empha-
sizes a collection of cases as a large memory, and

reasoning as a process of accessing and searching in
this memory. Memory organization and access is a
focus of the case-based methods. The utilization of
parallel processing techniques is a characteristic of
these methods, and distinguishes this approach from
the others. The access and storage methods may rely
on purely syntactic criteria, as in the MBR-Talk
system [63], or they may attempt to utilize general
domain knowledge, as the work done in Japan on
massive parallel memories [32].

Case-based reasoning. Although case-based
reasoning is used as a generic term in this paper,
the typical case-based reasoning methods have some
characteristics that distinguish them from the other
approaches listed here. First, a typical case is usually
assumed to have a certain degree of richness of
information contained in it, and a certain complexity
with respect to its internal organization. That is, a
feature vector holding some values and a
corresponding class is not what we would call a
typical case description. What we refer to as typical
case-based methods also has another characteristic
property: They are able to modify, or adapt, a re-
trieved solution when applied in a different problem
solving context. Paradigmatic case-based methods
also utilize general background knowledge - although
its richness, degree of explicit representation, and role
within the CBR processes varies. Core methods of
typical CBR systems borrow a lot from cognitive
psychology theories.

Analogy-based reasoning. This term is some-times
used, as a synonym to case-based reasoning, to
describe the typical case-based approach just
described [70]. However, it is also often used to
characterize methods that solve new problems
based on past cases from a different domain, while
typical case-based methods focus on indexing and
matching strategies for single-domain cases. Re-
search on analogy reasoning is therefore a subfield
concerned with mechanisms for identification and
utilization of cross-domain analogies [23, 30]. The
major focus of study has been on the reuse of a past
case, what is called the mapping problem: Finding a
way to transfer, or map, the solution of an identified
analogue (called source or base) to the present
problem (called target).

Throughout the paper we will continue to use the
term case-based reasoning in the generic sense, al-
though our examples, elaborations, and discussions
will lean towards CBR in the more typical sense. The
fact that a system is described as an example of some
other approach, does not exclude it from being a

6

typical CBR system as well. To the degree that more
special examples of, e.g., instance-based, memory-
based, or analogy-based methods will be discussed,
this will be stated explicitly.

3.2. A descriptive framework.

Our framework for describing CBR methods and
systems has two main parts:
- A process model of the CBR cycle
- A task-method structure for case-based reasoning

The two models are complementary and represent

two views on case-based reasoning. The first is a
dynamic model that identifies the main subprocesses
of a CBR cycle, their interdependencies and products.
The second is a task-oriented view, where a task
decomposition and related problem solving methods
are described. The framework will be used in
subsequent parts to identify and discuss important
problem areas of CBR, and means of dealing with
them.

3.3. The CBR cycle

At the highest level of generality, a general CBR
cycle may be described by the following four pro-
cesses3:
1. RETRIEVE the most similar case or cases
2. REUSE the information and knowledge in that

case to solve the problem
3. REVISE the proposed solution
4. RETAIN the parts of this experience likely to be

useful for future problem solving

A new problem is solved by retrieving one or

more previously experienced cases, reusing the
case in one way or another, revising the solution
based on reusing a previous case, and retaining the
new experience by incorporating it into the existing
knowledge-base (case-base). The four processes each
involve a number of more specific steps, which will
be described in the task model. In Fig. 1, this cycle is
illustrated.

An initial description of a problem (top of Fig. 1)
defines a new case. This new case is used to RE-
TRIEVE a case from the collection of previous cases.
The retrieved case is combined with the new case -
through REUSE - into a solved case, i.e. a proposed

3As a mnemonic, try "the four REs".

solution to the initial problem. Through the REVISE
process this solution is tested for success, e.g. by
being applied to the real world environment or
evaluated by a teacher, and repaired if failed. During
RETAIN, useful experience is retained for future
reuse, and the case base is updated by a new learned
case, or by modification of some existing cases.

As indicated in the figure, general knowledge
usually plays a part in this cycle, by supporting the
CBR processes. This support may range from very
weak (or none) to very strong, depending on the type
of CBR method. By general knowledge we here mean
general domain-dependent knowledge, as opposed to
specific knowledge embodied by cases.

RETRIEVE

RE
US

ER
ET

AI
N

Problem

New
Case

Retrieved
Case

General
Knowledge

Previous
Cases

Suggested
Solution

Solved
Case

Learned
Case

REVISE

Tested/
Repaired
Case

Confirmed
Solution

New
Case

Fig. 1. The CBR Cycle

For example, in diagnosing a patient by retrieving and
reusing the case of a previous patient, a model of
anatomy together with causal relationships between
pathological states may constitute the general
knowledge used by a CBR system. A set of rules may
have the same role.

7

3.4. A hierarchy of CBR tasks

The process view just described was chosen in
order to emphasize on CBR as a cycle of sequential
steps. To further decompose and describe the four
top-level steps, we switch to a task-oriented view,
where each step, or subprocess, is viewed as a task
that the CBR reasoner has to achieve. While a
process-oriented view enables a global, external
view to what is happening, a task-oriented view is
suitable for describing the detailed mechanisms from
the perspective of the CBR reasoner itself. This is
coherent with a task-oriented view of knowledge level
modelling [73].

At the knowledge level, a system is viewed as an
agent which has goals, and means to achieve its goals.
A system description can be made from three
perspectives: Tasks, methods and domain knowledge
models. Tasks are set up by the goals of the system,
and a task is performed by applying one or more
methods. For a method to be able to accomplish a
task, it needs knowledge about the general application
domain as well as information about the current
problem and its context. Our framework and analysis
approach is strongly influenced by knowledge
level modelling methods, particularly the Compo-
nents of Expertise methodology [64.65].

The task-method structure we will refer to in
subsequent parts of the paper is shown in Fig. 2.
Tasks have node names in bold letters, while methods
are written in italics. The links between task nodes
(plain lines) are task decompositions, i.e., part-of
relations, where the direction of the relationship is
downwards. The top-level task is problem solving
and learning from experience and the method to
accomplish the task is case-based reasoning
(indicated in a special way by a stippled arrow). This
splits the top-level task into the four major CBR tasks
corresponding to the four processes of Fig.1,
retrieve, reuse, revise, and retain. All the four tasks
are necessary in order to perform the top-level task.
The retrieve task is, in turn, partitioned in the same
manner (by a retrieval method) into the tasks identify
(relevant descriptors), search (to find a set of past
cases), initial match (the relevant descriptors to past
cases), and select (the most similar case).

All task partitions in the figure are complete, i.e.
the sets of subtasks of a task are intended to be
sufficient to accomplish the task, at this level of
description. The figure does not show any control
structure over the subtasks, although a rough

sequencing of them is indicated by having put earlier
subtasks higher up on the page than those that follow
(for a particular set of subtasks). The actual control is
specified as part of the problem solving method. The
relation between tasks and methods (stippled lines)
identify alternative methods applicable for solving a
task. A method specifies the algorithm that identifies
and controls the execution of subtasks, and accesses
and utilizes the knowledge and information needed to
do this. The methods shown are high-level method
classes, from which one or more specific methods
should be chosen. The method set as shown is
incomplete, i.e. one of the methods indicated may be
sufficient to solve the task, several methods may be
combined, or there may be other methods that can do
the job. The methods shown in the figure are task
decomposition and control methods. At the bottom
level of the task hierarchy (not shown), a task is
solved directly, i.e. by what may be referred to as task
execution methods.

 3.5. CBR Problem Areas

As for AI in general, there are no universal CBR
methods suitable for every domain of application. The
challenge in CBR as elsewhere is to come up with
methods that are suited for problem solving and
learning in particular subject domains and for par-
ticular application environments. In line with
the task model just shown, core problems addressed
by CBR research can be grouped into five areas. A set
of coherent solutions to these problems constitutes a
CBR method:

• Knowledge representation
• Retrieval methods
• Reuse methods
• Revise methods
• Retain methods

In the next five sections, we give an overview of
the main problem issues related to these five areas,
and exemplify how they are solved by some existing
methods. Our examples will be drawn from the six
systems PROTOS, CHEF, CASEY, PATDEX,
BOLERO, and CREEK. In the recently published
book by Janet Kolodner [37] these problems are
discussed and elaborated to substantial depth, and
hints and guidelines on how to deal with them are
given.

8

pr
ob

le
m

 s
ol

vi
ng

 a
nd

le

ar
ni

ng
 fr

om
 e

xp
er

ie
nc

e

re
tri

ev
e

re
us

e
re

ta
in

id
en

tif
y

fe
at

ur
es

in
iti

al
ly

m
at

ch

co
lle

ct
de

sc
rip

to
rs

in
fe

r
de

sc
rip

to
rs

in
te

rp
re

t
pr

ob
le

m

ca
lc

ul
at

e
si

m
ila

rit
y

ex
pl

ai
n

si
m

ila
rit

y

fo
llo

w
di

re
ct

in
de

xe
s

se
ar

ch
ge

ne
ra

l
kn

ow
le

dg
e

se
ar

ch
in

de
x

st
ru

ct
ur

e

co
py

re
vi

se

co
py

so
lu

tio
n

m
od

ify
so

lu
tio

n
m

et
ho

d
m

od
ify

so
lu

tio
n

ev
al

ua
te

in
 re

al
w

or
ld

ex
tra

ct

in
de

x

in
te

gr
at

e
ex

tra
ct

re
le

va
nt

de
sc

rip
to

rs

up
da

te
ge

ne
ra

l
kn

ow
le

dg
e

ex
tra

ct
so

lu
tio

ns

ad
ju

st
in

de
xe

s

de
te

rm
in

e
in

de
xe

s

re
ru

n
pr

ob
le

m

ge
ne

ra
liz

e
in

de
xe

s
ex

tra
ct

so
lu

tio
n

m
et

ho
d

ad
ap

t

ev
al

ua
te

in
 m

od
el

se
ar

ch

se
le

ct

ex
tra

ct
ju

st
ifi

ca
tio

ns

ev
al

ua
te

by
 te

ac
he

r ev
al

ua
te

so

lu
tio

n
re

pa
ir

fa
ul

t

Fi
gu

re
 2

.
A

 ta
sk

-m
et

ho
d

de
co

m
po

sit
io

n
of

 C
BR

ca
se

-b
as

ed
 re

as
on

in
g

us
e

se
le

ct
io

n
cr

ite
ria el
ab

or
at

e
ex

pl
an

at
io

ns

se
lf-

re
pa

ir us
er

-
re

pa
ir

co
py

so
lu

tio
n

m
et

ho
d

9

4. Representation of Cases

A case-based reasoner is heavily dependent on the
structure and content of its collection of cases - often
referred to as its case memory. Since a problem is
solved by recalling a previous experience suitable for
solving the new problem, the case search and
matching processes need to be both effective and
reasonably time efficient. Further, since the
experience from a problem just solved has to be
retained in some way, these requirements also apply
to the method of integrating a new case into the
memory. The representation problem in CBR is
primarily the problem of deciding what to store in a
case, finding an appropriate structure for describing
case contents, and deciding how the case memory
should be organized and indexed for effective
retrieval and reuse. An additional problem is how to
integrate the case memory structure into a model of
general domain knowledge, to the extent that such
knowledge is incorporated.

In the following subsection, two influential case
memory models are briefly reviewed: The dynamic
memory model of Schank and Kolodner, and the
category-exemplar model of Porter and Bareiss4.

4.1. The Dynamic Memory Model

As previously mentioned, the first system that may
be referred to as a case-based reasoner was
Kolodner's CYRUS system, based on Schank's
dynamic memory model [54]. The case memory in
this model is a hierarchical structure of what is called
'episodic memory organization packets' (E-MOPs
[33,34]), also referred to as generalized episodes [38].
This model was developed from Schank's more
general MOP theory. The basic idea is to organize
specific cases that share similar properties under a
more general structure (a generalized episode - GE).
A generalized episode contains three different types
of objects: Norms, cases and indices. Norms are
features common to all cases indexed under a GE.
Indices are features that discriminate between a GE's
cases. An index may point to a more specific

4Other early models include Rissland and Ashley's HYPO

system [52] in which cases are grouped under a set of domain-
specific dimensions, and Stanfill and Waltz' MBR model,
designed for parallel computation rather than knowledge-based
matching.

generalized episode, or directly to a case. An index is
composed of two terms: An index name and an index
value.

Fig. 3 illustrates this structure. The figure
illustrates a complex generalized episode, with its
underlying cases and more specific GE. The entire
case memory is a discrimination network where a
node is either a generalized episode (containing the
norms), an index name, index value or a case. Each
index-value pair points from a generalized episode to
another generalized episode or to a case. An index
value may only point to a single case or a single gen-
eralized episode. The indexing scheme is redundant,
since there are multiple paths to a particular case or
GE. This is illustrated in the figure by the indexing of
case1.

When a new case description is given and the best
matching is searched for, the input case structure is
'pushed down' the network structure, starting at the
root node. The search procedure is similar for case
retrieval as for case storing. When one or more fea-
tures of the case match one or more features of a GE,
the case is further discriminated based on its
remaining features. Eventually, the case with most
features in common with the input case is found5.
During storing of a new case, it is discriminated by
indexing it under different indices below its most
specific generalized episode. If - during the storage of
a case - two cases (or two GEs) end up under the
same index, a new generalized episode is
automatically created. Hence, the memory structure is
dynamic in the sense that similar parts of two case
descriptions are dynamically generalized into a GE,
and the cases are indexed under this GE by their dif-
ference features.

A case is retrieved by finding the GE with most
norms in common with the problem description.
Indices under that GE are then traversed in order to
find the case that contains most of the additional
problem features. Storing a new case is performed in
the same way, with the additional process of
dynamically creating generalized episodes, as
described above. Since the index structure is a
discrimination network, a case (or pointer to a case) is

5This may not be the right similarity criterion, and is

mentioned just to illustrate the method. Similarity criteria may
favour matching of a particular subset of features, or there may be
other means of assessing case similarity. Similarity assessment
criteria can in turn be used to guide the search - for example by
identifying which indexes to follow first if there is a choice to be
made.

10

stored under each index that discriminates it from
other cases. This may easily lead to an explosive
growth of indices with increased number of cases.
Most systems using this indexing scheme therefore
put some limits to the choice of indices for the cases.
In CYRUS, for example, only a small vocabulary of
indices is permitted.

norms: The norms part of a generalized
episode contain abstract general
information that characterize the
cases organized below it

indices:

index1

value1

case1

index2

value2

index3

value3 value4

case3

GENERALIZED EPISODE 2

norms: Norms of cases 1, 2, 4

indices:
index4

value5

case2

index5

value6

case4

GENERALIZED EPISODE 1

index1

value1

case1

Fig. 3: Structure of cases and generalized episodes.

CASEY stores a large amount of information in its

cases. In addition to all observed features, it retains
the causal explanation for the diagnosis found, as well
as the list of states in the heart failure model for
which there was evidence in the patient. These states,
referred to as generalized causal states, are also the
primary indices to the cases.

The primary role of a generalized episode is as an
indexing structure for matching and retrieval of cases.
The dynamic properties of this memory organization,
however, may also be viewed as an attempt to build a
memory structure which integrates knowledge from
specific episodes with knowledge generalized from
the same episodes. It is therefore claimed that this
knowledge organization structure is suitable for
learning generalized knowledge as well as case
specific knowledge, and that it is a plausible -
although simplified - model of human reasoning and
learning.

4.2. The category & exemplar model

The PROTOS system, built by Ray Bareiss and
Bruce Porter [9,49], proposes an alternative way to
organize cases in a case memory. Cases are also
referred to as exemplars. The psychological and
philosophical basis of this method is the view that
'real world', natural concepts should be defined
extensionally. Further, different features are assigned
different importances in describing a case's
membership to a category. Any attempt to generalize
a set of cases should - if attempted at all - be done
very cautiously. This fundamental view of concept
representation forms the basis for this memory model.
The case memory is embedded in a network structure
of categories, semantic relations, cases, and index
pointers. Each case is associated with a category. An
index may point to a case or a category. The indices
are of three kinds: Feature links pointing from
problem descriptors (features) to cases or categories
(called remindings), case links pointing from
categories to its associated cases (called exemplar
links), and difference links pointing from cases to the
neighbour cases that only differs in one or a small
number of features. A feature is generally described
by a name and a value. A category's exemplars are
sorted according to their degree of prototypicality in
the category.

Fig. 4 illustrates a part of this memory structure,
i.e. the linking of features and cases (exemplars) to
categories. The unnamed indices are remindings from
features to a category.

Within this memory organization, the categories
are inter-linked within a semantic network, which
also contains the features and intermediate states (e.g.
subclasses of goal concepts) referred to by other
terms. This network represents a background of
general domain knowledge, which enables explana-
tory support to some of the CBR tasks. For example,
a core mechanism of case matching is a method called
'knowledge-based pattern matching'. Finding a case
in the case base that matches an input description is
done by combining the input features of a problem
case into a pointer to the case or category that shares
most of the features. If a reminding points directly to
a category, the links to its most prototypical cases are
traversed, and these cases are returned.

As indicated above, general domain knowledge is
used to enable matching of features that are
semantically similar. A new case is stored by
searching for a matching case, and by establishing the

11

appropriate feature indices. If a case is found with
only minor differences to the input case, the new case
may not be retained or the two cases may be merged

by following taxonomic links in the semantic
network.

Feature-1 Feature-2 Feature-3 Feature-4 Feature-5

Category-1

Exemplar-1 Exemplar-2

strongly prototypical
 exemplar

weakly prototypical
exemplar

difference (feature-1 feature-4)

difference (feature-2)

 Fig. 4: The Structure of Categories, Features and Exemplars

5. Case Retrieval

The Retrieve task starts with a (partial) problem
description, and ends when a best matching previous
case has been found. Its subtasks are referred to as
Identify Features, Initially Match, Search, and Select,
executed in that order. The identification task basi-
cally comes up with a set of relevant problem
descriptors, the goal of the matching task is to return a
set of cases that are sufficiently similar to the new
case - given a similarity threshold of some kind, and
the selection task works on this set of cases and
chooses the best match (or at least a first case to try
out).

While some case-based approaches retrieve a
previous case largely based on superficial, syntactical
similarities among problem descriptors (e.g. the
CYRUS system [33], ARC [46], and PATDEX-1 [50]
systems), some approaches attempt to retrieve cases
based on features that have deeper, semantic
similarities (e.g. the PROTOS [9], CASEY [38],
GREBE [12], CREEK [3], and MMA [47] systems).
Ongoing work in the FABEL project, aimed to
develop a decision support system for architects,
explores various methods for combined reasoning and
mutual support of different knowledge types [21]. In
order to match cases based on semantic similarities
and relative importance of features, an extensive body
of general domain knowledge is needed to produce an
explanation of why two cases match and how strong

the match is. Syntactic similarity assessment -
sometimes referred to as a "knowledge-poor"
approach - has its advantage in domains where
general domain knowledge is very difficult or
impossible to acquire. On the other hand,
semantically oriented approaches - referred to as
"knowledge-intensive"6 - are able to use the contex-
tual meaning of a problem description in its matching,
for domains where general domain knowledge is
available.

A question that should be asked when deciding on
a retrieval strategy is the purpose of the retrieval task.
If the purpose is to retrieve a case which is to be
adapted for reuse, this can be accounted for in the re-
trieval method. Approaches to 'retrieval for
adaptation' have for example been suggested for
retrieval of cases for design problem solving [15], and
for analogy reasoning [17,45].

5.1. Identify Feature

To identify a problem may involve simply noticing
its input descriptors, but often - and particularly for
knowledge-intensive methods - a more elaborate

6Note that syntactic oriented methods may also contain a lot

of general domain knowledge, implicit in their matching methods.
The distinction between knowledge-poor and knowledge-
intensive is therefore related to explicitly represented domain
knowledge. Further, it refers to generalized domain knowledge,
since cases also contain explicit knowledge, but this is specialized
(specific) domain knowledge.

approach is taken, in which an attempt is made to
'understand' the problem within its context. Unknown
descriptors may be disregarded or requested to be
explained by the user. In PROTOS, for example, if an
input feature is unknown to the system, the user is
asked to supply an explanation that links the feature
into the existing semantic network (category
structure). To understand a problem involves filtering
out noisy problem descriptors, to infer other relevant
problem features, to check whether the feature values
make sense within the context, to generate
expectations of other features, etc. Other descriptors
than those given as input, may be inferred by using a
general knowledge model, or by retrieving a similar
problem description from the case base and use
features of that case as expected features. Checking of
expectations may be done within the knowledge
model (cases and general knowledge), or by asking
the user.

5.2. Initially Match

The task of finding a good match is typically split
into two subtasks: An initial matching process which
retrieves a set of plausible candidates, and a more
elaborate process of selecting the best one among
these. The latter is the Select task, described below.
Finding a set of matching cases is done by using the
problem descriptors (input features) as indexes to the
case memory in a direct or indirect way. There are in
principle three ways of retrieving a case or a set of
cases: By following direct index pointers from
problem features, by searching an index structure, or
by searching in a model of general domain
knowledge. PATDEX implements the first strategy
for its diagnostic reasoning, and the second for test
selection. A domain-dependent, but global similarity
metric is used to assess similarity based on surface
match. Dynamic memory based systems takes the
second approach, but general domain knowledge may
be used in combination with search in the discrimina-
tion network. PROTOS and CREEK combines one
and three, since direct pointers are used to
hypothesize a candidate set which in turn is justified
as plausible matches by use of general knowledge.

Cases may be retrieved solely from input features,
or also from features inferred from the input. Cases
that match all input features are, of course, good
candidates for matching, but - depending on the
strategy - cases that match a given fraction of the
problem features (input or inferred) may also be re-
trieved. PATDEX uses a global similarity metric,

with several parameters that are set as part of the
domain analysis. Some tests for relevance of a
retrieved case is often executed, particularly if cases
are retrieved on the basis of a subset of features. For
example, a simple relevance test may be to check if a
retrieved solution conforms with the expected
solution type of the new problem. A way to assess the
degree of similarity is needed, and several 'similarity
metrics' have been proposed, based on surface
similarities of problem and case features.

Similarity assessment may also be more
knowledge-intensive, for example by trying to
understand the problem more deeply, and using the
goals, constraints, etc. from this elaboration process
to guide the matching [3]. Another option is to weigh
the problem descriptors according to their importance
for characterizing the problem, during the learning
phase. In PROTOS, for example, each feature in a
stored case has assigned to it a degree of importance
for the solution of the case. A similar mechanism is
adopted by CREEK, which stores both the predictive
strength (discriminatory value) of a feature with
respect to the set of cases, as well as a feature's
criticality, i.e. what influence the lack of a feature has
on the case solution.

5.3. Select

From the set of similar cases, a best match is
chosen. This may have been done during the initial
match process, but more often a set of cases are
returned from that task. The best matching case is
usually determined by evaluating the degree of initial
match more closely. This is done by an attempt to
generate explanations to justify non-identical features,
based on the knowledge in the semantic network. If a
match turns out not to be strong enough, an attempt to
find a better match by following difference links to
closely related cases is made. This subtask is usually
a more elaborate one than the retrieval task, although
the distinction between retrieval and elaborate
matching is not distinct in all systems. The selection
process typically generates consequences and expec-
tations from each retrieved case, and attempts to
evaluate consequences and justify expectations. This
may be done by using the system's own model of
general domain knowledge, or by asking the user for
confirmation and additional information. The cases
are eventually ranked according to some metric or
ranking criteria. Knowledge-intensive selection
methods typically generate explanations that support
this ranking process, and the case that has the

strongest explanation for being similar to the new
problem is chosen. Other properties of a case that are
considered in some CBR systems include relative
importance and discriminatory strengths of features,
prototypicality of a case within its assigned class, and
difference links to related cases.

6. Case Reuse

The reuse of the retrieved case solution in the
context of the new case focuses on two aspects: (a)
the differences among the past and the current case
and (b) what part of retrieved case can be transferred
to the new case. The possible subtasks of Reuse are
Copy and Adapt.

6.1. Copy

In simple classification tasks the differences are
abstracted away (they are considered non relevant
while similarities are relevant) and the solution class
of the retrieved case is transferred to the new case as
its solution class. This is a trivial type of reuse.
However, other systems have to take into account
differences in (a) and thus the reused part (b) cannot
be directly transferred to the new case but requires an
adaptation process that takes into account those
differences.

6.2. Adapt

There are two main ways to reuse past cases7: (1)
reuse the past case solution (transformational reuse),
and (2) reuse the past method that constructed the
solution (derivational reuse). In transformational
reuse the past case solution is not directly a solution
for the new case but there exists some knowledge in
the form of transformational operators {T} such that
applied to the old solution they transform it into a
solution for the new case. A way to organize these T
operators is to index them around the differences
detected among the retrieved and current cases. An
example of this is CASEY, where a new causal
explanation is built from the old causal explanations
by rules with condition part indexing differences and
with a transformational operator T at the action part
of the rule. Transformational reuse does not look how
a problem is solved but focuses on the equivalence of

7We here adapt the distinction between transformational and

derivational analogy, put forth in [16].

solutions, and this is one requires a strong domain-
dependent model in the form of transformational
operators {T} plus a control regime to organize the
operators application.

Derivational reuse looks at how the problem was
solved in the retrieved case. The retrieved case holds
information about the method used for solving the
retrieved problem including a justification of the op-
erators used, subgoals considered, alternatives
generated, failed search paths, etc. Derivational reuse
then re-instantiates the retrieved method to the new
case and "replays" the old plan into the new context
(usually general problem solving systems are seen
here as planning systems). During the replay
successful alternatives, operators, and paths will be
explored first while filed paths will be avoided; new
subgoals are pursued based on the old ones and old
sub-plans can be recursively retrieved for them. An
example of derivational reuse is the Analogy/Prodigy
system [70] that reuses past plans guided by
commonalties of goals and initial situations, and
resumes a means-ends planning regime if the
retrieved plan fails or is not found.

7. Case Revision

When a case solution generated by the reuse phase
is not correct, an opportunity for learning from failure
arises. This phase is called case revision and consists
of two tasks: (1) evaluate the case solution generated
by reuse. If successful, learn from the success (case
retainment, see next section), (2) otherwise repair the
case solution using domain-specific knowledge or
user input.

7.1. Evaluate solution

The evaluation task takes the result from applying
the solution in the real environment (asking a teacher
or performing the task in the real world). This is
usually a step outside the CBR system, since it - at
least for a system in normal operation - involves the
application of a suggested solution to the real
problem. The results from applying the solution may
take some time to appear, depending on the type of
application. In a medical decision support system, the
success or failure of a treatment may take from a few
hours up to several months. The case may still be
learned, and be available in the case base in the
intermediate period, but it has to be marked as a non-
evaluated case. A solution may also be applied to a

simulation program that is able to generate a correct
solution. This is used in CHEF, where a solution (i.e.
a cooking recipe) is applied to an internal model
assumed to be strong enough to give the necessary
feedback for solution repair.

7.2. Repair fault

Case repair involves detecting the errors of the
current solution and retrieving or generating
explanations for them. The best example is the CHEF
system, where causal knowledge is used to generate
an explanation of why certain goals of the solution
plan were not achieved. CHEF learns the general
situations that will cause the failures using an
explanation-based learning technique. This is
included into a failure memory that is used in the
reuse phase to predict possible shortcomings of plans.
This form of learning moves detection of errors in a
pot hoc fashion to the elaboration plan phase were
errors can be predicted, handled and avoided. A
second step of the revision phase uses the failure
explanations to modify the solution in such a way that
failures do not occur. For instance, the failed plan in
the CHEF system is modified by a repair module that
adds steps to the plan that will assure that the causes
of the errors will not occur. The repair module
possesses general causal knowledge and domain
knowledge about how to disable or compensate
causes of errors in the domain. The revised plan can
then be retained directly (if the revision phase assures
its correctness) or it can be evaluated and repaired
again.

8. Case Retainment - Learning

This is the process of incorporating what is useful
to retain from the new problem solving episode into
the existing knowledge. The learning from success or
failure of the proposed solution is triggered by the
outcome of the evaluation and possible repair. It
involves selecting which information from the case to
retain, in what form to retain it, how to index the case
for later retrieval from similar problems, and how to
integrate the new case in the memory structure.

8.1. Extract

In CBR the case base is updated no matter how the
problem was solved. If it was solved by use of a
previous case, a new case may be built or the old case

may be generalized to subsume the present case as
well. If the problem was solved by other methods, in-
cluding asking the user, an entirely new case will
have to be constructed. In any case, a decision needs
to be made about what to use as the source of
learning. Relevant problem descriptors and problem
solutions are obvious candidates. But an explanation
or another form of justification of why a solution is a
solution to the problem may also be marked for
inclusion in a new case. In CASEY and CREEK, for
example, explanations are included in retained cases,
and reused in later modification of the solution.
CASEY uses the previous explanation structure to
search for other states in the diagnostic model that
explains the input data of the new case, and to look
for causes of these states as answers to the new
problem. This focuses and speeds up the explanation
process, compared to a search in the entire domain
model. The last type of structure that may be
extracted for learning is the problem solving method,
i.e. the strategic reasoning path, making the system
suitable for derivational reuse.

Failures, i.e. information from the Revise task,
may also be extracted and retained, either as separate
failure cases or within total-problem cases. When a
failure is encountered, the system can then get a
reminding to a previous similar failure, and use the
failure case to improve its understanding of - and
correct - the present failure.

8.2. Index

The 'indexing problem' is a central and much
focused problem in case-based reasoning. It amounts
to deciding what type of indexes to use for future
retrieval, and how to structure the search space of
indexes. Direct indexes, as previously mentioned,
skip the latter step, but there is still the problem of
identifying what type of indexes to use. This is
actually a knowledge acquisition problem, and should
be analyzed as part of the domain knowledge analysis
and modelling step. A trivial solution to the problem
is of course to use all input features as indices. This is
the approach of syntax-based methods within
instance-based and memory-based reasoning. In the
memory-based method of CBR-Talk [63], for
example, relevant features are determined by
matching, in parallel, all cases in the case-base, and
filtering out features that belong to cases with few
features in common with the problem case.

In CASEY, a two-step indexing method is used.
Primary index features are - as referred to in the

section on representation - general causal states in the
heart failure model that are part of the explanation of
the case. When a new problem enters, the features are
propagated in the heart failure model, and the states
that explain the features are used as indices to the
case memory. The observed features themselves are
used as secondary features only.

8.3. Integrate

This is the final step of updating the knowledge
base with new case knowledge. If no new case and
index set has been constructed, it is the main step of
Retain. By modifying the indexing of existing cases,
CBR systems learn to become better similarity
assessors. The tuning of existing indexes is an
important part of CBR learning. Index strengths or
importances for a particular case or solution are
adjusted due to the success or failure of using the case
to solve the input problem. For features that have
been judged relevant for retrieving a successful case,
the association with the case is strengthened, while it
is weakened for features that lead to unsuccessful
cases being retrieved. In this way, the index structure
has a role of tuning and adapting the case memory to
its use. PATDEX has a special way to learn feature
relevance: A relevance matrix links possible features
to the diagnosis for which they are relevant, and
assign a weight to each such link. The weights are
updated, based on feedback of success or failure, by a
connectionist method.

In knowledge-intensive approaches to CBR,
learning may also take place within the general
conceptual knowledge model, for example by other
machine learning methods (see next section) or
through interaction with the user. Thus, with a proper
interface to the user (whether a competent end user or
an expert) a system may incrementally extend and
refine its general knowledge model, as well as its
memory of past cases, in the normal course of
problem solving. This is an inherent method in the
PROTOS system, for example. All general
knowledge in PROTOS is assumed to be acquired in
such a bottom-up interaction with a competent user.

The case just learned may finally be tested by re-
entering the initial problem and see whether the
system behaves as wanted.

9. Integrated approaches

Most CBR systems make use of general domain

knowledge in addition to knowledge represented by
cases. Representation and use of that domain
knowledge involves integration of the case-based
method with other methods and representations of
problem solving, for instance rule-based systems or
deep models like causal reasoning. The overall
architecture of the CBR system has to determine the
interactions and control regime between the CBR
method and the other components. Note that the type
of integration we address here involves case based
reasoning as a core part of the target system's
reasoning method, and does not include case-oriented
approaches for acquiring general domain knowledge
(e.g. [74]). For instance, the CASEY system
integrates a model-based causal reasoning program to
diagnose heart diseases. When the case-based method
fails to provide a correct solution CASEY executes
the model-based method to solve the problem and
stores the solution as a new case for future use. Since
the model-based method is complex and slow, the
case-based method in CASEY is essentially a way to
achieve speed-up learning. The integration of model-
based reasoning is also important for the case-based
method itself: the causal model of the disease of a
case is what is retrieved and reused in CASEY.

An example of integrating rules and cases is the
BOLERO system [40]. BOLERO is a meta-level
architecture where the base-level is composed of rules
embodying knowledge to diagnose the plausible
pneumonias of a patient, while the meta-level is a
case-based planner that, at every moment, is able to
dictate which diagnoses are worthwhile to consider.
Thus in BOLERO the rule-based level contains
domain knowledge (how to deduce plausible
diagnosis from patient facts) while the meta-level
contains strategic knowledge (it plans, from all
possible goals, which are likely to be successfully
achieved). The case-based planner is therefore used to
control the space searched by the rule-based level,
achieving a form of speed-up learning. The control
regime between the two components is interesting:
the control passes to the meta-level whenever some
new information is known at the base level, assuring
that the system is dynamically able to generate a more
appropriate strategic plan. This control regime in the
meta-level architecture assures that the case-based
planner is capable of reactive behaviour, i.e. of
modifying plans reacting to situation changes. Also
the clear separation of rule-based and case-based
methods in two different levels of computation is
important: it clarifies their distinction and their
interaction.

The integration of CBR with other reasoning
paradigms is closely related to the general issue of
architectures for unified problem solving and
learning. These approach is a current trend in machine
learning with architectures such as Soar, Theo, or
Prodigy. CBR as such is a form of combining prob-
lem solving (through retrieval and reuse) and learning
(through retainment). However, as we have seen,
other forms of representation and reasoning are
usually integrated into a CBR system and thus the
general issue is an important dimension into CBR re-
search. In the CREEK architecture, the cases,
heuristic rules, and deep models are integrated into a
unified knowledge structure. The main role of the
general knowledge is to provide explanatory support
to the case-based processes [3], rules or deep models
may also be used to solve problems on their own if
the case-based method fails. Usually the domain
knowledge used in a CBR system is acquired through
knowledge acquisition in the normal way for
knowledge-based systems. Another option would be
to also learn that knowledge from the cases. In this
situation it can be learnt in a case-based way or by
induction. This line of work is currently being
developed in Europe by systems like the Massive
Memory Architecture and INRECA [41]. These
systems are closely related to the multi-strategy
learning systems [42]: the issues of integrating
different problem solving and learning methods are
essential to them.

The Massive Memory Architecture (MMA) [47] is
an integrated architecture for learning and problem
solving based on reuse of case experiences retained in
the systems memory. A goal of MMA is
understanding and implementing the relationship
between learning and problem solving into a
reflective or introspective framework: the system is
able to inspect its own past behaviour in order to learn
how to change its structure so as to improve is future
performance. Case-based reasoning methods are
implemented by retrieval methods (to retrieve past
cases), a language of preferences (to select the best
case) and a form of derivational analogy (to reuse the
retrieved method into the current problem). A
problem in the MMA does not use one CBR method,
since several CBR methods can be programmed for
different subgoals by means of specific retrieval
methods and domain-dependent preferences. Learning
in MMA is viewed as a form of introspective
inference, where the reasoning is not about a domain
but about the past behaviour of the system and about
ways to modify and improve this behaviour. This

view supports integration of case-based learning as
well as of other forms of learning from examples, like
inductive methods, which are also integrated into the
MMA and combined with case-based methods.

10. Example applications and tools

As a relatively young field, CBR cannot yet brag
about a lot of fielded applications. But there are some.
We briefly summarize two of these systems, to
illustrate how CBR methods can successfully realize
knowledge-based decision support systems.

10.1. Two Fielded Applications

At Lockheed, Palo Alto, the first fielded CBR
system was developed. The problem domain is
optimization of autoclave loading for heat treatment
of composite materials [26]. The autoclave is a large
convection oven, where airplane parts are treated in
order to get the right properties. Different material
types need different heating and cooling procedures,
and the task is to load the autoclave for optimized
throughput, i.e. to select the parts that can be treated
together, and distribute them in the oven so that their
required heating profiles are taken care of. There are
always more parts to be cured than the autoclave can
take in one load. The knowledge needed to perform
this task reasonably well used to reside in the head of
a just a few experienced people. There is no theory
and very few generally applicable schemes for doing
this job, so to build up experience in the form of
previously successful and unsuccessful situations is
important. The motivation for developing this
application was to be able to remember the relevant
earlier situations. Further, a decision support system
would enable other people than the experts to do the
job, and to help training new personnel. The develop-
ment of the system started in 1987, and it has been in
regular use since the fall 1990. The results so far are
very positive. The current system handles the
configuration of one loading operation in isolation,
and an extended system to handle the sequencing of
several loads is under testing. The development
strategy of the application has been to hold a low-risk
profile, and to include more advanced functionalities
and solutions as experience with the system has been
gained over some time.

The second application has been developed at
General Dynamics, Electric Boat Division [13].
During construction of ships, a frequently re-

occurring problem is the selection of the most
appropriate mechanical equipment, and to fit it to its
use. Most of these problems can be handled by fairly
standard procedures, but some problems are harder
and occur less frequently. These type of problems -
referred to as "non-conformances" - also repeat over
time, and because regular procedures are missing,
they consume a lot of resources to get solved .
General Dynamics wanted to see whether a
knowledge-based decision support tool could reduce
the cost of these problems. The application domain
chosen was the selection and adjustment of valves for
on-board pipeline systems. The development of the
first system started in 1986, using a rule-based
systems approach. The testing of the system on real
problems initially gave positive results, but problems
of brittleness and knowledge maintenance soon
became apparent. In 1988 a feasibility study was
made of the use of case-based reasoning methods
instead of rules, and a prototype CBR system was
developed. The tests gave optimistic results, and an
operational system was fielded in 1990. The rule-base
was taken advantage of in structuring the case
knowledge and filling the initial case base. IN the fall
of 1991 the system was continually used in three out
of four departments involved with mechanical
construction. A quantitative estimate of cost
reductions has been made: The rule-based system
took 5 man-years to develop, and the same for the
CBR system (2 man-years of studies and
experimental development and 3 man-years for the
prototype and operational system). This amounts to
$750.000 in total costs. In the period December 90 -
September 91 20.000 non-conformances were
handled. The cost reduction, compared to previous
costs of manual procedures, was about 10%, which
amounts to a saving of $240.000 in less than one year.

There are many any other applications in test use
or more or less regular use. A rapidly growing
application type is "help desk systems" [36,58], where
basically case-based indexing and retrieval methods
are used to retrieve cases, which then are viewed as
information chunks for the user, instead of sources of
knowledge for reasoning8. Such a system can also be
a first step towards a more full-fledged CBR system.

8A gradual transition from such a system, starting with some

help desk and information filtering [74] functions, and moving to
an advice-giving case-based decision support tool, is the approach
taken in a system currently being specified for the Norwegian oil
industry [43].

10.2. Tools

Several commercial companies offer shells for
building CBR systems. Just as for rule-based systems
shells, they enable you to quickly develop
applications, but at the expense of flexibility of
representation, reasoning approach and learning
methods. In [25] Paul Harmon reviewed four such
shells: ReMind from Cognitive Systems Inc., CBR
Express/ART-IM from Inference Corporation, Esteem
from Esteem Software Inc., and Induce-it (later
renamed to CasePower) from Inductive Solutions,
Inc. The first three of these were reviewed more
thoroughly by Thomas Schult for the German AI
journal [56]. The example of CBR Express and ART-
IM is typical, since many vendors offer CBR
extensions to an existing tool. On the European scene
Acknosoft in Paris offers the shell KATE-CBR as
part of their CaseCraft Toolbox, Isoft, also in Paris,
has a shell called ReCall. TechInno in Kaiserslautern
has S3-Case, a PATDEX-derived tool that is part of
their S3 environment for technical systems mainte-
nance.

As an example of functionality, the ReMind shell
offers an interactive environment for acquisition of
cases, domain vocabulary, indexes and prototypes.
The user may define hierarchical relations among at-
tributes and a similarity measure based on them.
Indexing is done inductively by building a decision
tree and allowing the user to graphically edit the
importance of attributes. Several retrieval methods are
supported: (1) inductive retrieval matching the most
specific prototype in a prototype hierarchy, (2)
nearest neighbour retrieval, and (3) SQL-like template
retrieval. Case adaptation is based on formulas that
adjust values based on retrieved vs. new case
differences. ReMind also has the capability of
representing causal relationships using a qualitative
model. The first commercial products appeared in
1991 including Help-Desk systems, technical
diagnosis, classification and prediction, control and
monitoring, planning, and design applications.
ReMind is a trademark of Cognitive Systems Inc. and
was developed with the DARPA support.

ReCall is a CBR system trademark of ISoft, a
Paris based AI company, and applications include
help desk systems, fault diagnosis, bank loan analysis,
control and monitoring. Retrieval methods are a
combination of methods (1) and (2) in ReMind, but
offer standard adaptation mechanisms such as vote
and analogy, and a library of adaptation methods.

The KATE-CBR tool, named CaseWork,

integrates an instance-based CBR approach within a
tool for inductive learning of, and problem solving
from, decision trees. The inductive and case-based
methods can be used separately, or integrated into a
single combined method. There are editor facilities to
graphically build parts of the case/index structure, and
to generate user dialogues. The tool has incorporated
initial results on integration of case-based and
inductive methods from the INRECA project [41].

Some academic CBR tools are freely available,
e.g. by anonymous ftp, or via contacting the
developers.9

11. Conclusions and Future trends

Summarizing the paper, we can say that case-
based reasoning (CBR) puts forward a paradigmatic
way to attack AI issues, namely problem solving,
learning, usage of general and specific knowledge,
combining different reasoning methods, etc. In
particular we have seen that CBR emphasizes
problem solving and learning as two sides of the same
coin: problem solving uses the results of past learning
episodes while problem solving provides the
backbone of the experience from which learning
advances. The current state of the art in Europe
regarding CBR is characterized by a strong influence
of the USA ideas and CBR systems, although Europe
is catching up and provides a somewhat different
approach to CBR, particularly in its many activities
related to integration of CBR and other approaches
and by its movement toward the development of
application-oriented CBR systems.

The development trends of CBR methods can be
grouped around four main topics: Integration with
other learning methods, integration with other
reasoning components, incorporation into massive
parallel processing, and method advances by focusing
on new cognitive aspects. The first trend, integration
of other learning methods into CBR, forms part of the
current trend in ML research toward multi-strategy
learning systems. This research aims at achieving an
integration of different learning methods (for instance
case-based learning and induction as is done in the
MMA and INRECA systems) into a coherent
framework, where each learning method fulfils a
specific and distinct role in the system. The second

9 Protos, for example, is available from the University of

Texas, and code for implementing a simple version of dynamic
memory, as described in [51], is available from the Institute of
Learning Sciences at Northwestern University.

trend, integration of several reasoning methods aims
at using the different sources of knowledge in a more
thorough, principled way, like what is done in the
CASEY system with the use of causal knowledge.
This trend emphasizes the increasing importance of
knowledge acquisition issues and techniques in the
development of knowledge-intensive CBR systems,
and the European Workshop on CBR showed a strong
European commitment towards the utilization of
knowledge level modelling in CBR systems design.

The massive memory parallelism trend applies
case-based reasoning to domains suitable for shallow,
instance-based retrieval methods on a very large
amount of data. This direction may also benefit from
integration with neural network methods, as several
Japanese projects currently are investigating [32]. By
the fourth trend, method advances from focusing on
the cognitive aspects, what we particularly have in
mind is the follow-up of work initiated on creativity
(e.g. [55]) as a new focus for CBR methods. It is not
just an 'application type', but a way to view CBR in
general, which may have significant impact on our
methods.

The trends of CBR applications are clearly that we
initially will see a lot of help desk applications
around. This type of systems may open up for a more
general coupling of CBR - and AI in general - to in-
formation systems. The use of cases for human
browsing and decision making, is also likely to lead
to increased interest in intelligent computer-aided
learning, training, and teaching. The strong role of
user interaction, of flexible user control, and the drive
towards total interactiveness of systems (of
'situatedness', if you like) favours a case-based
approach to intelligent computer assistance, since
CBR systems are able to continually learn from, and
evolve through, the capturing and retainment of past
experiences.

Case-based reasoning has blown a fresh wind and
a well justified degree of optimism into AI in general
and knowledge based decision support systems in
particular. The growing amount of ongoing CBR
research - within an AI community that has learned
from its previous experiences - has the potential of
leading to significant breakthroughs of AI methods
and applications.

Acknowledgements

We thank Stefan Wess, Ramon Lopez de
Mantaras, and Pinar Özturk for comments on drafts of
this paper.

References

 [1] Aamodt, A., (1989) Towards robust expert systems that
learn from experience - an architectural framework. In
John Boose, Brian Gaines, Jean-Gabriel Ganascia (eds.):
EKAW-89; Third European Knowledge Acquisition for
Knowledge-Based Systems Workshop , Paris, July 1989. pp
311-326.

 [2] Aamodt, A. (1991). A knowledge-intensive approach to
problem solving and sustained learning, Ph.D.
dissertation, University of Trondheim, Norwegian Institute
of Technology, May 1991. (University Microfilms PUB
92-08460)

 [3] Aamodt, A. (1993) Explanation-driven retrieval, reuse,
and learning of cases, In EWCBR-93: First European
Workshop on Case-Based Reasoning. University of
Kaiserslautern SEKI Report SR-93-12 (SFB 314)
(Kaiserslautern, Germany, 1993) 279-284.

 [4] Althoff, K.D (1989). Knowledge acquisition in the domain
of CNC machine centers; the MOLTKE approach. In John
Boose, Brian Gaines, Jean-Gabriel Ganascia (eds.):
EKAW-89; Third European Workshop on Knowledge-
Based Systems, Paris, July 1989. pp 180-195.

 [5] Althoff, K-D. (1992). Machine learning and knowledge
acquisition in a computational architecture for fault
diagnosis in engineering systems. Proceedings of the ML-
92 Workshop on Computational Architectures for Machine
Learning and Knowledge Acquisition. Aberdeen, Scotland,
July 1992.

 [6] Anderson, J. R., (1983). The architecture of cognition.
Harvard University Press, Cambridge.

 [7] Aha, D. , Kibler, D. , and Albert, M. K. (1991). Instance-
Based Learning Algorithms. Machine Learning, vol.6 (1).

 [8] Allemang, Dean (1994) Review of EWCBR-93, AI
Communication, this issue.

 [9] Bareiss, R. (1989). Exemplar-based knowledge
acquisition: A unified approach to concept representation,
classification, and learning. Boston, Academic Press.

 [10] K. Ashley (1991). Modeling legal arguments: Reasoning
with cases and hypotheticals. MIT Press, Bradford Books,
Cambridge.

 [11] Bareiss, R. (1988): PROTOS; a unified approach to
concept representation, classification and learning.
Ph.D. Dissertation, University of Texas at Austin, Dep.
of Computer Sciences 1988. Technical Report AI88-83.

 [12] Branting, K. (1991): Exploiting the complementarity of
rules and precedents with reciprocity and fairness. In:
Proceedings from the Case-Based Reasoning Workshop
1991, Washington DC, May 1991. Sponsored by DARPA.
Morgan Kaufmann, 1991. pp 39-50.

 [13] Brown, B. and Lewis, L. (1991): A case-based reasoning
solution to the problem of redundant resolutions of non-
conformances in large scale manufacturing. In: R. Smith,
C. Scott (eds.): Innovative Applications for Artificial
Intelligence 3. MIT Press.

 [14] Burstein, M.H. (1989): Analogy vs. CBR; The purpose of
mapping. Proceedings from the Case-Based Reasoning
Workshop, Pensacola Beach, Florida, May-June 1989.
Sponsored by DARPA. Morgan Kaufmann. pp 133-136.

 [15] Börner, K. (1993): Structural similarity as guidance in
case-based design. In: First European Workshop on Case-
based Reasoning, Posters and Presentations, 1-5
November 1993. Vol. I. University of Kaiserslautern, pp.
14-19.

 [16] Carbonell, J. (1986): Derivational analogy; A theory of
reconstructive problem solving and expertise acquisition.
In R.S. Michalski, J.G. Carbonell, T.M. Mitchell (eds.):
Machine Learning - An artificial Intelligence Approach,
Vol.II, Morgan Kaufmann, pp. 371-392.

 [17] Cunningham, P. and Slattery, S. (1993): Knowledge
enigneering requirements in derivational analogy. In: First
European Workshop on Case-based Reasoning, Posters
and Presentations, 1-5 November 1993. Vol. I. University
of Kaiserslautern, pp. 108-113.

 [18] Proceedings from the Case-Based Reasoning Workshop,
Pensacola Beach, Florida, May-June 1989. Sponsored by
DARPA. Morgan Kaufmann.

 [19] Proceedings from the Case-Based Reasoning Workshop,
Washington D.C., May 8-10, 1991. Sponsored by
DARPA. Morgan Kaufmann.

 [20] First European Workshop on Case-based Reasoning,
Posters and Presentations, 1-5 November 1993. Vol. I-II.
University of Kaiserslautern.

 [21] The FABEL Consortium (1993): Survey of FABEL.
FABEL Report No. 2, GMD, Sankt Augustin.

 [22] Gentner, D. (1983): Structure mapping - a theoretical
framework for analogy. Cognitive Science, Vol.7. s.155-
170.

 [23] Hall, R. P. (1989): Computational approaches to
analogical reasoning; A comparative analysis. Artificial
Intelligence, Vol. 39, no. 1, 1989. pp 39-120.

 [24] Hammond, K.J (1989): Case-based planning. Academic
Press.

 [25] Harmon, P. (1992): Case-based reasoning III, Intelligent
Software Strategies, VIII (1).

 [26] Hennessy, D. and Hinkle, D. (1992). Applying case-based
reasoning to autoclave loading. IEEE Expert 7(5), pp. 21-
26.

 [27] Hinrichs, T.R. (1992): Problem solving in open worlds.
Lawrence Erlbaum Associates.

 [28] IEEE Expert (1992): 7(5), Special issue on case-based
reasoning. October 1992

 [29] Keane, M. (1988): Where's the Beef? The Absence of
Pragmatic Factors in Pragmatic Theories of Analogy In:
Proc. ECAI-88, pp. 327-332

 [30] Kedar-Cabelli, S. (1988): Analogy - from a unified
perspective. In: D.H. Helman (ed.), Analogical reasoning.
Kluwer Academic, 1988. pp 65-103.

 [31] Kibler, D. and Aha, D. !987): Learning representative
exemplars of concepts; An initial study. Proceedings of the
fourth international workshop on Machine Learning, UC-
Irvine, June 1987. pp 24-29.

 [32] Kitano, H. (1993): Challenges for massive parallelism.
IJCAI-93, Proceedings of the Thirteenth International
Conference on Artificial Intelligence, Chambery, France,
1993. Morgan Kaufman 1993. pp. 813-834.

 [33] Kolodner, J. (1983a): Maintaining organization in a
dynamic long-term memory. Cognitive Science, Vol.7,
s.243-280.

 [34] KolodnerJ. (1983b): Reconstructive memory, a computer
model. Cognitive Science, Vol.7, s.281-328.

 [35] Kolodner, J. (1988): Retrieving events from case memory:
A parallel implementation. In: Proceedings from the Case-
based Reasoning Workshop, DARPA, Clearwater Beach,
1988, pp. 233-249.

 [36] Kolodner, J. (1992): An introduction to case-based
reasoning. Artificial Intelligence Review 6(1), pp. 3-34.

 [37] Kolodner, J. (1993): Case-based reasoning. Morgan
Kaufmann, 1993.

 [38] Koton, P. (1989): Using experience in learning and
problem solving. Massachusetts Institute of Technology,
Laboratory of Computer Science (Ph.D. diss, October
1988). MIT/LCS/TR-441. 1989.

 [39] López, B. and Plaza, E. (1990): Case-based learning of
strategic knowledge. Centre d'Estudis Avançats de Blanes,
CSIC, Report de Recerca GRIAL 90/14. Blanes, Spain,
October 1990.

 [40] Lopez, B. and Plaza, E. (1993):Case-based planning for
medical diagnosis, In: Methodologies for intelligent
systems: 7th International Symposium, ISMIS '93,
Trondheim, June 1993 (Springer 1993) 96-105.

 [41] Manago, M., Althoff, K-D. and Traphöner, R. (1993):
Induction and reasoning from cases. In: ECML - European
Conference on Machine Learning, Workshop on Intelligent
Learning Architectures. Vienna, April 1993.

 [42] Michalski, R and Tecuci, G (1992): Proceedings
Multistrategy Learning Workshop, George Mason
University.

 [43] Nordbø, I., Skalle, P., Sveen, J., Aakvik, G., and Aamodt,
A. (1992): Reuse of experience in drilling - Phase 1
Report. SINTEF DELAB and NTH, Div. of Petroleum
Engineering. STF 40 RA92050 and IPT 12/92/PS/JS.
Trondheim.

 [44] Oehlmann, R. (1992): Learning causal models by self-
questioning and experimentation. AAAI-92 Workshop on
Communicating Sientific and Technical Knowledge.
American Association of Artificial Intelligence.

 [45] O'Hara, S. and Indurkhya, B. (1992): Incorporating (re)-
interpretation in case-based reasoning. In: First European
Workshop on Case-based Reasoning, Posters and
Presentations, 1-5 November 1993. Vol. I. University of
Kaiserslautern, pp. 154-159

 [46] Plaza, E. and López de Mántaras, R (1990): A case-based
apprentice that learns from fuzzy examples. Proceedings,
ISMIS, Knoxville, Tennessee, 1990. pp 420-427.

 [47] Plaza, E. and Arcos J. L. (1993):, Reflection and Analogy
in Memory-based Learning, Proceedings Multistrategy
Learning Workshop, George Mason University. p. 42-49.

 [48] Porter, B. and Bareiss, R. (1986): PROTOS: An
experiment in knowledge acquisition for heuristic
classification tasks. In: Proceedings of the First
International Meeting on Advances in Learning (IMAL),
Les Arcs, France, pp. 159-174.

 [49] Porter, B., Bareiss, R. and Holte, R. (1990): Concept
learning and heuristic classification in weak theory
domains. Artificial Intelligence, vol. 45, no. 1-2,
September 1990. pp 229-263.

 [50] Richter, A.M. and Weiss, S. (1991): Similarity, uncertainty
and case-based reasoning in PATDEX. In R.S. Boyer
(ed.): Automated reasoning, essays in honour of Woody
Bledsoe. Kluwer, pp. 249-265.

 [51] Riesbeck, C. and Schank, R. (1989): Inside case-based
reasoning. Lawrence Erlbaum.

 [52] Rissland, E. (1983): Examples in legal reasoning: Legal
hypotheticals. In: Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, IJCAI,
Karlsruhe.

 [53] Ross, B.H (1989): Some psychological results on case-
based reasoning. Case-Based Reasoning Workshop ,
DARPA 1989. Pensacola Beach. Morgan Kaufmann. pp.
144-147).

 [54] Schank, R. (1982): Dynamic memory; a theory of
reminding and learning in computers and people.
Cambridge University Press.

 [55] Schank, R. and Leake, D. (1989): Creativity and learning
in a case-based explainer. Artificial Intelligence, Vol. 40,
no 1-3. pp 353-385.

 [56] Schult, T. (1992): Werkzeuge für fallbaseierte systeme.
Künstliche Intelligenz 3(92).

 [57] Sharma, S., Sleeman, D (1988): REFINER; a case-based
differential diagnosis aide for knowledge acquisition and
knowledge refinement. In: EWSL 88; Proceedings of the
Third European Working Session on Learning, Pitman. pp
201-210.

 [58] Simoudis, E. (1992): Using case-based reasoning for
customer techical support. IEEE Expert 7(5), pp. 7-13.

 [59] Simpson, R.L. (1985): A computer model of case-based
reasoning in problem solving: An investigation in the
domain of dispute mediation. Technical Report GIT-ICS-
85/18, Georgia Institute of Technology.

 [60] Skalak, C.B, and Rissland, E. (1992): Arguments and
cases: An inevitable twining. Artificial Intelligence and
Law, An International Journal, 1(1), pp.3-48.

 [61] Slade, S. (1991): Case-based reasoning: A research
paradigm. AI Magazine Spring 1991, pp. 42-55.

 [62] Smith, E. and Medin, D. (1981): Categories and concepts.
Harvard University Press.

 [63] Stanfill, C and Waltz, D. (1988): The memory based
reasoning paradigm. In: Case based reasoning.
Proceedings from a workshop, Clearwater Beach, Florida,
May 1988. Morgan Kaufmann Publ. pp.414-424.

 [64] Steels, L. (1990): Components of expertise, AI Magazine,
11 (2) (Summer 1990) 29-49.

 [65] Steels, L. (1993): The componential framework and its
role in reusability, In J-M. David, J-P. Krivine, R.
Simmons (eds.), Second generation expert systems
(Spinger, 1993) 273-298.

 [66] Strube, G. and Janetzko, D. (1990): Episodishes Wissen
und Fallbasierte Schliessen: Aufgabe fur die
Wissendsdiagnostik und die Wissenspsychologie.
Schweizerische Zeitschrift fur Psychologie, 49, 211-221.

 [67] Strube, G. (1991): The role of cognititve science in
knowledge engineering, In: F. Schmalhofer, G. Strube
(eds.), Contemporary knowledge engineering and
cognition: First joint workshop, proceedings, (Springer
1991) 161-174.

 [68] Sycara, K. (1988): Using case-based reasoning for plan
adaptation and repair. Proceedings Case-Based Reasoning
Workshop, DARPA. Clearwater Beach, Florida. Morgan
Kaufmann, pp. 425-434.

 [69] Tulving, E. (1977): Episodic and semantic memory. In E.
Tulving and W. Donaldson: Organization of memory,
Academic Press, 1972. pp. 381-403.

 [70] Veloso, M.M. and Carbonell, J. (1993): Derivational
analogy in PRODIGY. In Machine Learning 10(3), pp.
249-278.

 [71] Venkatamaran, S., Krishnan, R. and Rao, K.K. (1993): A
rule-rule-case based system for image analysis. In: First
European Workshop on Case-based Reasoning, Posters
and Presentations, 1-5 November 1993. Vol. II. University
of Kaiserslautern, pp. 410-415.

 [72] Wittgenstein, L. (1953): Philosophical investigations.
Blackwell, pp. 31-34.

[73] Van de Velde, W. (1993): Issues in knowledge level
modelling, In J-M. David, J-P. Krivine, R. Simmons
(eds.), Second generation expert systems , Spinger, 211-
231.

[74] Schmalhofer, F and Thoben, J. (1992): The model-based
construction of a case-oriented expert system, AI
Communications 5(1), 3-18.

[75] Rouse, W.B and Hurt, R.M (1982): Human problem
solving in fault diagnosis tasks, Georgia Institute of
Technology, Center for Man-Machine Systems Research,
Research Report no 82-3.

